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Abstract
Automated detection of unusual activities in surveillance videos remains a
significant challenge due to the massive amount of recorded footage and the
low occurrence of anomalous events. Here we report a novel deep learning
framework designed to address this problem by integrating three core
components: three-dimensional Convolutional Neural Networks (3D-CNNs)
for extracting spatiotemporal features, Long Short-Term Memory (LSTM)
networks for capturing sequential dependencies, and an attention mechanism
for emphasizing the most salient regions of video data. The study aimed to
design a robust model capable of classifying surveillance video clips into
“usual” and “unusual” categories with high accuracy while handling class
imbalance and environmental variations. The proposed model was trained and
evaluated on three large-scale benchmark datasets: UCF-Crime, XD-Violence,
and CCTV-Fights, which represent real-world anomalies under diverse
conditions. Experimental results demonstrated that the framework achieved an
overall accuracy of 97.41% on UCF-Crime, 98.11% on XD-Violence, and
98.50% on CCTV-Fights, alongside consistently high values of precision,
recall, and F1-score. These findings indicate that combining spatiotemporal
modelling with attention-driven context aggregation substantially improves
anomaly detection performance compared to existing baselines. The
significance of this research lies in showing that integrating temporal
modelling and attention can advance current surveillance systems, providing a
more scalable and effective approach for anomaly detection in surveillance
videos.

1. Introduction
Modern video surveillance technology has become an essential element for maintaining public safety across
multiple spaces, including cities, transportation terminals, schools, and business enterprises [1]. These systems
create video data that requires efficient analysis solutions and accurate monitoring techniques for detecting
security threats and public disturbances [2].

Identifying abnormal conduct within video monitoring falls under anomalies and suspicious conduct [3,4].
Identifying abnormal patterns must happen quickly and precisely because it enables immediate actions to reduce
their impact [5]. The manual review of surveillance footage is labour-intensive, prone to errors, and too
demanding to manage the enormous data output [6]. Current conditions demand automated anomaly detection
systems that function in real-time operations throughout various operational environments [7].
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The traditional methods that detect video anomalous events depend on human-designed features and statistical
pattern recognition systems [8]. Automated surveillance benefited from these initial methods, yet they tend to
fail when dealing with the real-world environment complexity and variation [9,10]. These standard methods face
major hurdles when implementing them in complex environments because of changing backgrounds along with
different lighting conditions and the specific situational nature of anomalies [11].

Deep learning transforms computer vision through advanced tools for extracting features while performing
pattern recognition operations [12]. Both convolutional neural networks (CNNs) and recurrent neural networks
(RNNs) demonstrate outstanding success through deep learning models when tackling object detection, together
with action recognition and scene understanding tasks [13,14]. The models excel at arranging hierarchical
structures from untreated data, which positions them as optimal candidates for video surveillance anomaly
identification [15,16]. Multiple hurdles continue to hinder video anomaly detection systems, even with the
advantages brought through deep learning technology. Heterogeneous video quality (e.g., varying resolutions,
frame rates, and lighting conditions) often reduces model robustness and accuracy [17]. The lack of available
labelled anomalous data represents a substantial problem since anomalies naturally occur infrequently between
multiple diverse patterns. For practical deployment it is essential to achieve high accuracy with real-time
performance operations [18].

The proposed research focuses on creating a reliable method to find anomalies in surveillance videos which
exploits deep learning architecture capabilities. The technique works to overcome traditional process weaknesses
through combination of spatial-temporal modelling and attention strategies to understand video information
patterns across time and space. The model operates as a binary classifier whose main objective is to detect
normal versus abnormal incidents while generating useful response outputs intended for surveillance functions.

The contributions of this study are as follows:

 Integration of Spatiotemporal Features: The model employs 3D convolutional layers to extract spatial
and temporal features simultaneously, capturing the intricate dynamics of video sequences.​

 Temporal Modelling with LSTM: This approach effectively models temporal dependencies by
incorporating long-short-term memory networks, enhancing the detection of anomalies that unfold over
time.​

 Attention Mechanism: Including an attention layer allows the model to focus on critical segments of the
video, improving interpretability and performance.​

 Comprehensive Evaluation: The method is evaluated on multiple benchmark datasets, including UCF-
Crime, XD-Violence, and CCTV-Fights, demonstrating its generalizability across various scenarios.​

This paper endeavors to advance the field of video anomaly detection by presenting a deep learning-based
approach that addresses current challenges and offers practical solutions for surveillance systems. Figure 1
shows usual and unusual activity inside an ATM in a surveillance camera frame [19].
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Figure 1: Usual and unusual activity inside an ATM in a surveillance camera frame. The usual activity is on the right
side, while the unusual one is on the left [19].

The rest of this paper is organized as follows: Section 2 reviews related work in anomaly detection in video
footage. Section 3 explains the details and steps of the proposed method. Section 4 discusses the obtained results.
Finally, Section 5 concludes.

2. RELATED WORKS
Unusual activity detection within security footage has significantly progressed because of recent developments
in deep learning and computer vision technology. Several cutting-edge methods are designed to address
detection problems in video surveillance information through innovative techniques. The research team of
Feroze et al. [20] presented a group anomaly detection system that analyses collective actions instead of single
actions for identifying abnormal group dynamics. The approach identifies relationships between several moving
entities, so it detects anomalies better in dense environments, yet shows decreased performance when
abnormalities show up faintly in isolated person movements. Mahdi et al. [21] developed a whole system for
reporting unusual activities through deep learning techniques that used convolutional neural networks for
normal/abnormal behaviour separation. The research work provided an effective base for surveillance
applications through its high precision performance but its data requirements are significant together with limited
response time in actively changing environments. The integration of CNNs with LSTM networks for violence
detection in crowded environments achieved by Sharma et al. [22] enabled real-time analysis of temporal violent
incident patterns. The dual-architecture system developed by their team provides superior detection performance
yet applies mostly to active physical contact between subjects without broad ability to detect diverse anomalies.

The research by Ramzan et al. [23] took novelty steps through video pattern analysis and temporal event
detection for anomaly identification processes. This study demonstrated how combining multiple domains of
data helps detect more anomalies especially in security and healthcare applications. The additional complexity of
data fusion systems together with their implementation difficulties creates obstacles for simple deployment and
expansion.

Kalshetty and Parveen [24] proposed an anomaly detection model based on an improved ResNet101 architecture
with non-linear analysis for real-time surveillance. Their method achieves high accuracy and provides actionable
insights, but it demands high computational resources and may need optimization for resource-constrained
environments. Shukla [25] contributed an intrusion detection system that combines teaching-learning-based
optimization with support vector machines, thus extending anomaly detection into the cybersecurity domain.
While this robust multi-domain framework bridges visual and cybersecurity applications, the integration of
optimization algorithms with SVMs adds complexity and tuning challenges.

Jaramillo-Alcázar et al. [26] explored anomaly detection in innovative industrial environments by integrating
IoT and machine learning techniques, demonstrating the method’s versatility and applicability to industrial
settings. Nevertheless, adapting this approach to other domains might require significant modifications. Mane
[27] proposed a sustainable, automated method for real-time anomaly detection using CNNs combined with deep
learning strategies. The study focused on efficiently managing large video datasets while maintaining high
detection accuracy; however, its reliance on deep architectures increases training time and computational
demands. Wani et al. [28] developed the Efficient and Accurate Suspicious Activity Detection (EASAD), which
integrates an enhanced Squeeze-Net architecture and an improved U-Net segmentation. This fully automated
approach significantly improves detection performance, yet it may face limitations when applied to
heterogeneous datasets with varying quality and frame rates. Gawande et al. [29] presented a Novel person
detection and suspicious activity recognition using enhanced YOLOv5 and motion feature map, specifically
addressing complex criminal behaviours such as arson and vandalism in urban settings. Although it introduces a
domain-specific focus that effectively discriminates between various crime types, the model’s complexity and
dependency on domain-specific tuning can limit its broader applicability without further adjustments.

In this paper, we propose a novel approach that builds on the strengths of these earlier methods by integrating
spatiotemporal feature extraction via 3D CNNs, temporal dynamics modelling with LSTM networks, and an
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attention mechanism to focus on critical segments of the video selectively. The proposed method addresses the
limitations identified in previous works by improving the detection accuracy in heterogeneous and dynamic
environments, optimizing computational efficiency for real-time performance, and ensuring adaptability across
diverse application domains. Table 1 shows a summary table of the related works discussed, with a brief
presentation of the strengths and weaknesses of each paper.

Table 1: Summary of related works with a brief presentation of the strengths and weaknesses.
Ref. Approach (Method Used) Strength Points Weak Points or Restrictions

[20] Group anomaly detection focusing on
collective behaviours

Captures contextual interactions
in crowded scenarios

Less effective with subtle individual
anomalies

[21] CNN-based framework for unusual
activity detection

High accuracy; strong
foundation for surveillance
applications

Requires extensive annotated data;
may struggle in real-time dynamic
settings

[22] Integration of CNN and LSTM for
violence detection

Enhanced temporal analysis;
real-time performance

Limited generalizability beyond overt
physical interactions

[23] Multi-modal integration of video and
temporal signals

Captures a broader range of
anomalies through data fusion

Increased complexity and fusion
challenges

[24] Improved ResNet101-based anomaly
detection with non-linear analysis

High accuracy; actionable real-
time insights

High computational resource
demands; requires optimization

[25] Intrusion detection using teaching-
learning optimization with SVMs

Bridges the visual and
cybersecurity anomaly
detection

Added complexity; tuning challenges

[26] IoT and machine learning-based anomaly
detection in industrial settings

Versatile, effective IoT
integration

May require significant modifications
for broader domain adaptability

[27] Sustainable automated anomaly detection
using CNNs and deep learning

Efficient management of large-
scale data; balanced accuracy

Increased training time and
computational demands

[28] Efficient and Accurate Suspicious
Activity Detection (EASAD) using
enhanced Squeeze-Net

Fully automated; significant
detection performance
improvements

Limited by heterogeneous data
quality and varying frame rates

[29] Detection and suspicious activity
recognition using enhanced YOLOv5

Effectively discriminates
between various crime types

High model complexity; requires
domain-specific tuning for broader
application

3. PROPOSEDMETHOD
This paper proposes a new deep learning framework for Robust Unusual Activity Detection in Surveillance
Videos, introducing innovative elements to improve recognition accuracy and robustness. Figure 2 shows the
graphical representation of the proposed method.

The method is structured into three main stages: data collection and preparation, the model architecture, and the
model training strategy.

3.1 Dataset Collection and Preparation
For robust evaluation and training of the proposed model, we employ three complementary datasets that capture
a wide range of abnormal events within surveillance footage:

 UCF-Crime Anomaly-Detection-Dataset-UCF:
This large-scale dataset [30] consists of 1,900 long surveillance videos spanning more than 128 hours,
annotated into abnormal activities such as robbery, assault, burglary, and arson, along with normal
activities. Its diversity in environmental conditions (day/night, indoor/outdoor) and heterogeneous video
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quality makes it a challenging and comprehensive benchmark for anomaly detection. For this study, the
dataset was split into three subsets: 70% for training (1,330 videos), 15% for validation (285 videos), and
15% for testing (285 videos). This ensures a balanced representation of both anomalous and normal
activities across all sets. All anomaly classes available in the dataset were included in the experiments to
ensure comprehensive evaluation and to capture the wide spectrum of real-world abnormal activities.

Figure 2: Schematic diagram of the proposed method. The workflow starts with collecting surveillance video data and
splitting it into training and testing sets. After applying augmentation and labelling, the data is used to train and evaluate the
anomaly detection model, which ultimately predicts class labels for usual and unusual activities.

 XD-Violence:
The XD-Violence dataset [31] contains approximately 4,754 untrimmed videos with a total duration of
217 hours. It includes both violent and non-violent scenarios captured in diverse environments such as
streets, stadiums, and transportation hubs. This variability in video quality, camera viewpoints, and scene
complexity enhances the model’s capability to generalize to real-world conditions. To enable robust
evaluation, the dataset was divided into training (3,328 videos, 70%), validation (713 videos, 15%), and
testing (713 videos, 15%). This division maintains consistency while preserving class diversity in each
subset.

 CCTV-Fights:
This dataset [32] comprises over 1,000 annotated video clips focusing on physical altercations and
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aggressive behaviour in CCTV recordings. The videos represent short surveillance clips from different
crowd densities, camera angles, and lighting conditions, further diversifying the abnormal event scenarios
and complementing the larger datasets. The dataset was divided into 700 clips (70%) for training, 150
clips (15%) for validation, and 150 clips (15%) for testing, with equal proportions of fight and non-fight
clips in each split.

Together, these datasets ensure comprehensive coverage of diverse anomaly types, video qualities, and
environmental contexts, providing a solid foundation for training and evaluating the proposed framework. Figure
3 show the sample frames from surveillance video datasets.

Figure 3. Representative sample frames from surveillance video datasets. Each column corresponds to a different dataset.
Normal frames are shown on the top, while anomalous frames are on the bottom.

The preparation procedures in the proposed method include the following:

 Frame Standardization: All video frames are resized to a consistent resolution to standardize spatial
dimensions (224 × 224).

 Normalization: Pixel intensities are normalized to ensure the input data are on comparable scales, thus
promoting stable convergence during training.

 Augmentation: To mitigate class imbalance, a comprehensive augmentation pipeline, including spatial
transformations (random horizontal flips), photometric adjustments (brightness and contrast variations),
and temporal modifications (frame shuffling and cropping), is applied. By exposing the model to a wide
range of conditions and activity variations during training, this stage helps improve its ability to generalize
and recognize abnormal events.

 Dataset Partitioning: The collected videos are subsequently partitioned into training, validation, and test
sets, adhering to a 70:15:15 ratio, ensuring each set contains a balanced representation of usual and
unusual events.

 Annotation: Each video sample is rigorously labelled to indicate the presence of either usual or unusual
activities, serving as ground truth for supervised learning.

3.2 The Proposed Model Architecture
The proposed method introduces a hybrid deep learning framework that combines 3D CNNs for spatiotemporal
feature extraction, LSTMs for temporal dynamics modelling, and an attention mechanism for prioritizing
important features, culminating in binary classification. Figure 4 illustrates the Architecture of the proposed
model.
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Figure 4: The Architecture of the proposed model. The proposed architecture extracts spatiotemporal features using 3D
CNN layers, models temporal dependencies with LSTM, and applies an attention mechanism to emphasize key segments
before producing the final binary classification.

3.2.1 Spatiotemporal Feature Extraction with 3D CNN:
The proposed method leverages a tailored 3D Convolutional Neural Network (3D CNN) to capture both spatial
details and short-term temporal dynamics directly from video inputs. The architecture is composed of two
primary convolutional blocks. The first block begins with a 3D convolutional layer containing 64 filters of size
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3×3×3, applied with stride 1 and padding 1 to preserve the temporal and spatial dimensions. This is followed by
Batch Normalization to stabilize training and a ReLU activation function for non-linearity. A Max Pooling layer
with a kernel size of (1,2,2) is then applied, reducing the spatial dimensions (height and width) while retaining
the temporal resolution. The second block extends this process with a 3D convolutional layer of 128 filters, also
sized 3×3×3 with stride 1 and padding 1, again followed by Batch Normalization and ReLU activation. A second
Max Pooling layer with a kernel size of (1,2,2) further reduces the spatial dimensionality. The output feature
maps are subsequently rearranged so that the temporal dimension serves as the sequential axis for the LSTM
module, enabling the model to learn long-term temporal dependencies across video frames.

3.2.2 Temporal Dynamics Modelling using LSTM:
To effectively model long-range temporal dependencies across video frames, the 3D CNN feature maps are
reshaped into a sequence of per-frame feature vectors, where each vector is formed by flattening the spatial
dimensions and channel information into a single representation. These vectors are then processed by a two-layer
Long Short-Term Memory (LSTM) network configured with a hidden state dimension of 256. At each time step,
the recurrent gates (input, forget, and output) play a crucial role in selectively retaining relevant temporal context
and filtering out noise, allowing the model to capture the progression of activities throughout the video sequence.
The LSTM ultimately generates a sequence of hidden states, which serves as the input for the subsequent
attention-based processing stage, ensuring that meaningful temporal patterns are preserved for accurate anomaly
detection.

3.2.3 Enhanced Focus via Attention Mechanisms

The attention mechanism is integrated to highlight critical temporal segments that signify abnormal events,
ensuring that less informative frames do not weaken the model’s focus. Specifically, a learnable linear layer is
applied to each LSTM hidden state, and the resulting values are normalized into scalar scores using a SoftMax
function across the temporal dimension. These normalized weights are then used to compute a weighted sum of
the LSTM outputs, generating a context vector that aggregates the most salient temporal features. The final
context vector effectively summarizes the video sequence by concentrating on the frames most relevant to
identifying unusual activity.

3.2.4 Classification Layer:

The final stage employs a fully connected layer that maps the 256-dimensional context vector to binary output
classes, determining whether the activity is usual or unusual. A linear transformation produces a two-
dimensional logits vector corresponding to the two classes, followed by a SoftMax activation during training and
inference to generate probabilistic class scores. To address class imbalance, the training process incorporates a
weighted cross-entropy loss function, while regularization techniques such as dropout and weight decay are
applied to prevent overfitting and ensure robust end-to-end training of the proposed architecture.

Table 2 shows the hyperparameter values ​ ​ used in the experiments. Table 3 provides a summary of the
network architecture parameters.

Table 2: Hyperparameter values ​ ​ used in the proposed model.
Hyperparameter Value Description
Learning Rate 1e-4 Initial learning rate for the Adam optimizer
Batch Size 16 Number of video samples per batch
Number of Epochs 50 Total training iterations over the entire training set
LSTM Hidden Dimension 256 Dimensionality of the LSTM hidden layer
LSTM Layers 2 Number of LSTM layers stacked for temporal modelling
Dropout Rate 0.5 Dropout probability applied after fully connected layers
Weight Decay 1e-5 L2 regularization parameter
Pooling Kernel Size (1, 2, 2) Kernel size for spatial pooling in 3D CNN
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Hyperparameter Value Description
Attention Mechanism Input 256 Dimensionality corresponding to the LSTM hidden states used in attention

Table 3: Summary of network structural parameters
Layer Type Parameters Description
3D Convolutional
Layer 1

64 filters; kernel size =
3×3×3; stride = 1; padding =
1

Extracts initial spatiotemporal features while preserving spatial and
temporal dimensions.

Batch
Normalization
(Layer 1)

N/A Normalizes feature maps from Convolutional Layer 1 to promote
stable and efficient training.

ReLU Activation N/A Introduces non-linearity into the network, enabling the learning of
complex feature hierarchies.

Max Pooling Layer
1

Kernel size = 1×2×2 Reduces the spatial dimensions while retaining the whole temporal
dimension in Block 1.

3D Convolutional
Layer 2

128 filters; kernel size =
3×3×3; stride = 1; padding =
1

Captures deeper spatiotemporal features, enhancing the feature
representation for subsequent layers.

Batch
Normalization
(Layer 2)

N/A Stabilizes and accelerates training by standardizing the outputs
from Convolutional Layer 2.

ReLU Activation N/A Introduces non-linearity into the network, enabling the learning of
complex feature hierarchies.

Max Pooling Layer
2

Kernel size = 1×2×2 Further reduces the spatial resolution, creating compact feature
maps while preserving temporal consistency.

LSTM Layer 2 layers; hidden state size =
256

Models long-range temporal dynamics by processing flattened
feature vectors sequentially.

Attention Layer Linear transformation,
SoftMax normalization

Computes attention weights over the LSTM outputs to highlight
salient temporal features and generate a context vector for
classification.

Fully Connected
Layer

Input size = 256; output size
= 2 (binary classification)

Transforms the context vector into class logits, with a SoftMax
activation subsequently applied to provide probabilities for the
binary outcomes (Usual vs. Unusual).

3.3 Training Model
The training strategy is meticulously devised to optimize model performance and generalization:

 Loss Function:
o A weighted cross-entropy loss function addresses the class imbalance, ensuring that the minority

class (unusual) receives appropriate emphasis during optimization.
 Optimization Strategy:

o The Adam optimizer is employed with an initial learning rate of 1 × 10⁻⁴.
o A learning rate scheduler dynamically adjusts the rate based on validation performance,

promoting steady convergence.
 Regularization Techniques:

o Dropout (with a rate of 0.5) is applied after the fully connected layer to prevent overfitting by
randomly deactivating units during training.

o Batch Normalization is inherent within the convolutional layers to stabilize training by
maintaining consistent feature distributions.

 Training Procedure:
o The model is trained over a specified epoch using mini-batch stochastic gradient descent with a

batch size 16.



Alkadhim Journal for Computer Science, Vol. 3, No. 3 (2025)

10

o Online data augmentation is performed during training to enhance model robustness further and
simulate various realistic conditions.

o Model evaluation is periodically conducted, with performance metrics such as accuracy,
precision, recall, and F1-score guiding iterative improvements and implementing early stopping
mechanisms.

Upon completion of training, the trained network efficiently classifies incoming video sequences into 'usual' or
'unusual' categories based on the learned spatiotemporal features and attention-weighted context.

Algorithm 1 summarizes the complete anomaly detection process in the proposed security scenes, outlining the
key stages of the proposed method from input to binary classification.
Algorithm 1: High-Level Steps for the Proposed Unusual Activity Detection Method
Input: Pre-processed surveillance video
Output: Binary classification label (Usual or Unusual)

1. Data Collection and Preprocessing
o Acquire surveillance video data from specified datasets.
o Standardize frame dimensions via resizing and normalize pixel intensities.
o Apply data augmentation (spatial flips, brightness/contrast adjustments, temporal cropping/shuffling)

and partition data into training and testing sets.

2. Spatiotemporal Feature Extraction
o Process the input video using a 3D CNN:

 Block 1: 3D Convolution with 64 filters (3×3×3, stride 1, padding 1), Batch Normalization,
ReLU activation, and max pooling (kernel size: 1×2×2).

 Block 2: 3D Convolution with 128 filters (3×3×3, stride 1, padding 1), Batch Normalization,
ReLU activation, and max pooling (kernel size: 1×2×2).

o Rearrange output such that the temporal dimension becomes the sequence axis.

3. Temporal Dynamics Modelling
o Flatten per-frame feature maps and feed the sequence into an LSTM (2 layers, hidden size = 256) to

capture long-range temporal dependencies.

4. Attention Mechanism Integration
o Apply a linear transformation to compute attention scores over LSTM outputs.
o Normalize scores via SoftMax and obtain a weighted context vector summarizing salient temporal

features.

5. Classification
o Feed the attention-weighted context vector into a fully connected layer.
o Use a SoftMax layer to produce final classification probabilities for the binary classes (Usual vs.

Unusual).

4. RESULTS AND ANALYSIS
The experimental evaluation of the proposed method ran on PyTorch through a workstation, which included an
Intel Core i7 processor and 32 GB of RAM, and an NVIDIA GeForce RTX 2080 GPU. The implemented
training software used Python 3.8 and obtained the newest versions of NumPy and PyTorch, together with the
required deep learning libraries. The training process was conducted for 50 epochs using 16 sample batches and
an Adam optimizer, which started training from 1×10⁻⁴ learning rate. Multiple simulations with varying
combinations emerged from extensive parameter optimization initiatives to reach optimal training performance
while maintaining adequate processing speed. Figure 5 shows the overall training accuracy and loss across the
combined datasets.
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Figure 5: The overall training accuracy and loss across the combined datasets.

The proposed framework employs 3D CNNs for space-time feature extraction, followed by LSTM networks to
capture long-term relations and attention modules to focus on important features, thus creating a strong system
for detecting anomalous conduct in security tapes. The performance assessment for the proposed methodology
took place on UCF-Crime benchmarks and XD-Violence, along with CCTV-Fights. The performance metrics,
Accuracy and Precision, together with Recall and F1-Score, appear in Table 4 for all datasets. Figure 6 displays
a depiction of the model performance metrics to enable visual assessment of metric changes between datasets.

Table 4: Performance Metrics on Three Datasets
Dataset Accuracy (%) Precision (%) Recall (%) F1-Score (%)
UCF-Crime 97.41% 97.75% 97.21% 97.47%
XD-Violence 98.11% 98.35% 97.95% 98.15%
CCTV-Fights 98.50% 98.79% 98.25% 98.51%

Figure 6: Performance metrics on three datasets.

The proposed method shows consistent performance excellence in various datasets through the combined
analysis of spatial and temporal features. The attention mechanism integration was an essential component that
directed analysis to the most crucial video segments to remedy any adverse impact of reduced temporality from
3D CNN features. The method's focus maintained an ideal balance between precision and recall by resolving
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typical class imbalance problems that occur in surveillance data circumstances. Performance evaluation
demonstrates that the proposed system provides robust operation and generalizes effectively to new data.
Research involved a thorough evaluation that established the proposed technique's performance level against
established methods when using the UCF-Crime dataset. The UCF-Crime dataset was selected because it
functions as the benchmark in this field, which enabled us to measure the proposed approach against current
cutting-edge surveillance video anomaly detection methods. The proposed method displayed superior results
than related approaches because it combined an end-to-end training mechanism with integrated spatiotemporal
analysis and context-aware attention models. Table 5 presents a comparison between the proposed method and
related works on the UCF-Crime dataset.

Table 5: Comparison with Related Methods
Method Accuracy Method Year
[21] 95.30% CNN-based anomaly detection 2021
[27] 95.33% Mobile-Net + BiLSTM 2024
[28] 95.51% Deep learning–based IoT

surveillance
2024

[29] 96.12% YOLOv5 + Motion Feature Map 2024
Proposed method 97.41% 3D CNN + LSTM + Attention 2025
The results demonstrate that the proposed approach achieves better than related techniques in accuracy
measurements and generates remarkable improvements in precision, along with recall and F1 score metrics. The
proposed method proves its worth as an enhanced solution for detecting anomalies in security footage obtained
from camera surveillance systems. A performance comparison between these methods appears in Figure 7,
which visually illustrates the performance differences between them.

Figure 7 Comparison of the proposed method with some related works.
The experimental results demonstrate that the proposed deep learning model effectively detects abnormal events
in many types of surveillance environments. The proposed technique generates superior results by combining
high accuracy performance with equal strength between precision and recall measurements compared to existing
approaches. Learned spatiotemporal features through 3D CNNs paired with temporal modelling capabilities of
LSTMs and attention mechanisms strengthens the system's ability to identify both major and tiny abnormal
patterns in complex dynamic spaces. The modifications of this system produce anomaly detection capabilities
alongside reliable operations. The model achieves enhanced performance metrics while offering practical
operational scalability for security system deployment, which enhances public security measures in various
operational environments.

5. Conclusions
This paper introduced a deep learning framework to detect suspicious activity patterns throughout surveillance
video recordings. The proposed model uses 3D convolutional layers to obtain spatial features and short-term
temporal information, together with an LSTM network that supports modelling extended temporal dependencies.
Adding an attention mechanism further refines this process by dynamically weighting the most informative
segments of each video, thereby mitigating the dilution of critical anomaly cues, through extensive experiments
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on the UCF‑Crime, XD-Violence, and CCTV-Fights datasets. The proposed method achieved superior accuracy,
precision, recall, and F1-score metrics. This represents a substantial improvement over traditional
handcrafted‑feature approaches and prior CNN‑ or LSTM‑only models, which struggled with limited temporal
context or class imbalance issues. The proposed framework exceeds strong quantitative results by offering
practical deployment features for real-time implementation. The end-to-end system design allows quick
inference processing, which makes it compatible for real-time integration with surveillance systems. The model
achieves improved generalizability through combining data augmentation techniques with weighted loss
function training, which makes it perform well across various activity patterns and lighting conditions. The
ablation studies conducted confirm the individual contributions of the 3D CNN, LSTM, and attention modules to
overall performance gains. Future work may explore adaptive temporal resolutions and multi‑stream fusion
strategies to capture anomalies occurring at various time scales. Extending the framework to handle multi‑class
anomaly categorization and incorporating unsupervised pre‑training could further advance its applicability.
Nonetheless, the current study lays a strong foundation for practical, high‑performance anomaly detection in
security footage, offering a scalable solution for enhancing public safety and operational efficiency in
surveillance environments.
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