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Abstract

There is a growing trend toward the use of software-

defined networks (SDN), which presents new security

challenges requiring advanced intrusion detection

systems (IDS). This paper proposes a deep learning-

based hybrid system combining convolutional neural

networks (CNNs) and long-term short-term memory

networks (LSTMs) that can be used for effective

intrusion detection in SDN environments. The model

uses CNNs to extract spatial features from network

traffic data and LSTMs to learn temporal patterns,

enabling the identification of complex attack patterns.

We evaluate our model using an In SDN dataset and test

its performance using various feature sets, ranging from

6 to 83 features in our model. Experimental results

indicate that our model has a high multi-class

classification accuracy of 99.63% when using all 83

features in Group 1. Furthermore, we utilize the

Synthetic Minority Over-sampling Technique (SMOTE)

to address the issue of class imbalance which

considerably enhances the detection accuracy of minority

attack classes which is reaching 99.76%. It is established
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that the presented hybrid CNN-LSTM model is a

powerful and effective solution for improving SDN

security.

1. Introduction

Software-defined networking (SDN) has transformed networking management by decoupling the control plane

from data plane and has made it more flexible and programmable. However, the centralized architecture is also a

new source of vulnerabilities, attack points and it becomes an easy target of cyber-attacks such as DDoS, brute

force, and web attacks. Traditional intrusion detection mechanisms struggle to keep up with advanced threat

types in SDN environments. Consequently, this is why intelligent, adaptive and effective intrusion detection

systems are urgently needed to be able to acquire the complex patterns of the network traffic[1][2].

Although conventional machine learning (ML) has been applied successfully to detecting static threats[3]. It fails

to capture the complex spatiotemporal dependencies of contemporary cyber-attacks, particularly in the case of

the specific characteristics of SDN networks. The methodologies of DL have shown a high potential in solving

complex pattern recognition problems in the context of cyber-security applications [4]. The convolutional neural

networks (CNNs) [5] are also good at extracting hierarchical spatial features from network traffic data, whereas

the long short-term memory (LSTM) networks [6] are good at modeling the temporal dependencies required to

understand attack sequences and behavioral anomalies. However, effective hybrid architecture design has to

consider numerous architectural components and hyper parameters, such as layer designs, activation functions,

regularization strategies, and optimization parameters [2]. The paper suggests a DL model which is a

combination of CNNs to extract spatial features and LSTMs to learning temporal sequences. This proposed

model is meant to extract both spatial and temporal features of network traffic flows to offer a more detailed

analysis towards intrusion detection.

The choice of the CNN-LSTM hybrid architecture stems from its ability to take both spatial and temporal

patterns inherent in network traffic data which is a crucial demand for efficient intrusion detection in software-

defined network (SDN) environments. CNNs excel at extracting hierarchical spatial features from data streams,

which identify positional patterns and structural correlations indicative of malicious activity. LSTMs on the

other hand are particularly adept at modeling sequential dependencies and long-term temporal behaviors that are

critical for recognizing multi-stage attacks and behavioral anomalies over time. While standalone models like

CNNs, RNNs and traditional machine learning algorithms have shown effectiveness in specific scenarios but

they often struggle to simultaneously learn spatial features and temporal dynamics. By combining CNN for

spatial representation with LSTM for sequential learning, our hybrid model offers a comprehensive and

adaptable framework capable of accurately detecting complex and sophisticated threats.

This work has several contributions. First, a hybrid CNN-LSTM network is constructed and trained strategically,

utilizing dropout and batch normalization as stability and generalization tools. Second, we compare this model’s

performance on In SDN data across six feature sets, providing an idea of the balance between feature dimensions
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and detection performance. Lastly, the critical class imbalance is handled by employing SMOTE [7] method

which proves to be an important enhancement for detecting rare and severe attacks. The findings indicate that

our framework is a highly valid and robust solution for securing SDN environments.

The rest of this paper is structured as follows: Section 2 provides a review of related work in SDN intrusion

detection. Section 3 explains an In SDN dataset, pre-processing and the proposed model structure. Section 4

shows the performance evaluation and experimental results. Section 5 presents the findings and limitations of

this work and Section 6 concludes the paper with future research.

2. Related Work

The field of SDN intrusion detection has seen substantial advancements with the application of several ML and

DL methods, with recent studies showing increasingly sophisticated and effective approaches.

A comprehensive multi-layered security framework was presented that combined MAC address authentication

with a dual-discriminator conditional generative adversarial network (DDcGAN). This system utilizes Four-Q

curve cryptography for authentication, univariate ensemble feature selection for switch optimization and Sheep

Flock Optimization Algorithm (SFOA) to develop DDcGAN performance. The framework obtained remarkable

results involving accuracy of 98.29%, true positive rate of 99.04% and false alarm rate of 2.05% while showing

4.5% energy savings contrast to existing methods [8]. Similarly, a Graph Residual Attention Network (GRAN)

was presented that integrates attention mechanisms and residual learning into graph neural networks for SDN

intrusion detection and attained accuracy of 97.1% in multi-class attack classification [9]. Recent studies have

increasingly adopted graph-based learning for SDN security. For example, Graph SAGE was employed within

SDN framework to detect DoS attacks, showing increased accuracy and scalability by structural feature

learning[10].

Notable contributions have been made in hybrid models and generative approaches. One study advanced

DAERF which is a hybrid framework that combines a deep Autoencoder for feature learning with random forest

classifier and obtains 98% accuracy on benchmark datasets while preserving low false positives and minimal

controller overhead [11]. Another comprehensive comparison of diverse GAN architectures involving traditional GAN,

DCGAN and WGAN-GP for anomaly detection in SDN environments showed that even simpler GAN models can

effectively detect attacks with decreased latency [12].

For instance, a study evaluating various algorithms found that the Deep CNN model obtained a classification

accuracy of 99.85% which is outstanding traditional ML methods [13]. Similarly, the LSTM-based system

(SATIDS) demonstrated a high accuracy rate for both binary and multi-class classification [14]. However,

challenges such as data imbalance and over fitting in distributed non-IID environments remain as shown in

studies that integrate federated learning (FL) with Generative Adversarial Networks (GANs)[15].
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Traditional ML approaches have also demonstrated competitive performance, especially when integrated with

feature selection. A main study revealed that Decision Tree (DT) models could achieve an accuracy of 99.8%

with small number of features from the original features which significantly reduces computational load [16].

Furthermore, the combination of optimized feature selection like modified Grey Wolf Optimizer (GWO) with a

Light GBM classifier has achieved accuracies reached to 99.8% [17]. Ensemble methods and hierarchical

architectures like hierarchical multiclass (HMC) with SMOTE technique have been effective in handling class

imbalance which improves the detection of rare attacks like U2R and Botnet [18]. The value of feature

engineering is further highlighted by lightweight models that use a small number of well-designed features for

real-time DDoS detection and achieving accuracies of 97-99.4% [19][20].

Hybrid and specialized models show great promise in balancing performance and efficiency. LSTM-

Autoencoder have proven powerful in anomaly detection with lower computational costs which led to makes

them proper for resource-constrained environments [21]. Integrating CNNs with ML classifiers has also been

successful, one study obtained high accuracy while introducing novel regularization technique (SD-Reg) to

prevent and avoid over fitting [22]. Despite these improvements is still a notable limitation of many models is

poor generalization to unseen data sources which highlights the need for robust and cross-domain solutions [23].

Recurrent architectures like RNNs, LSTMs and GRUs are inherently well-suited for detecting temporal patterns

in network attacks [24]. Based on this, hybrid CNN-LSTM models have also been prepared to learn spatial and

temporal features concurrently. However, one of those models obtained accuracy of 96.32% [25]. It has also

reported a false-positive rate of 6% which refers to improvements in model design and regularization. Other

methods like ensemble methods [26] unsupervised learning with LSTM Autoencoder and one-class SVM [27]

present various ways to attain successful intrusion detection under accuracy, resource and data availability

constraints.

While recent approaches like transformers, GNNs, Autoencoder and GANs give advantages for intrusion

detection but they face challenges like high computational costs, dependency on network topology or need for

balanced data. In contrast, our CNN-LSTM hybrid effectively combines spatial and temporal learning with

greater computational efficiency, making it adaptable for both high-performance and resource-limited SDN

deployments.

Despite these improvements, various critical constraints persist in existing SDN-focused IDS models. First,

many approaches rely on either spatial or temporal modeling in isolation and employ CNNs for feature

extraction or LSTMs for sequence analysis but fail to combine both capabilities into a cohesive architecture.

This restricts their capability to detect complex and multi-stage attacks that display both spatial correlations and

temporal dependencies [13, 14, 21]. Second, while feature selection is widely specified as important, most

studies assess models on fixed or narrowly defined feature sets without systematically exploring the trade-off

between feature richness and computational efficiency over a range of feature dimensions [16, 17, 19]. Third,
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class imbalance remains a pervasive issue, although techniques like SMOTE have been used, many models still

struggle to detect rare but critical attack classes like U2R and Web Attacks, resulting in poor recall for minority

categories [18, 22, 27]. Fourth, generalization remains a concern with many models over fitting to specific

datasets or failing to execute consistently in non-IID or developing network environments [15, 23]. Finally, even

hybrid CNN-LSTM models reported in the literature often exhibit relatively high false-positive rates (e.g., 6%)

which refers to the need for improved regularization and architectural optimization [25].

To handle these gaps, this paper suggests an optimized hybrid CNN-LSTM framework to overcome the

aforementioned limitations. Our model combines CNN and LSTM layers in a complementary architecture that

simultaneously captures spatial patterns and temporal sequences, allowing more robust detection of sophisticated

attacks. We systematically assess the model across six feature sets ranging from 6 to 83 features which gives

empirical insights into the balance between detection performance and computational efficiency, allowing

flexible deployment in both resource-constrained and full-feature scenarios. To tackle class imbalance, we

explicitly apply the Synthetic Minority Over-sampling Technique (SMOTE) to the training data which notably

enhancing the detection of minority attack classes without compromising overall accuracy. Furthermore, we

incorporate batch normalization, dropout and stratified sampling to improve generalization and mitigate over

fitting. Experimental results show that our framework obtains an accuracy of 99.63% with a false-positive rate of

0.05% in the full-feature configuration, outperforming existing hybrid models across both overall and per-class

metrics particularly for rare attack types.

3. Adopted Approach

This section depicts the overall methodology utilized in our proposed model. Figure 1 details the framework’s

overall workflow for guiding the reader via the systematic process from raw data input to the final intrusion

detection mechanism.
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Figure (1): The Overall Framework of the Proposed Intrusion Detection System.

3.1 Dataset

We utilize the In SDN dataset [28], a comprehensive cyber-security dataset specifically prepared for SDN

networks. This dataset handles constraints of traditional networking datasets by incorporating attack vectors with

characteristics of SDN architectures. Utilizing datasets prepared for traditional networks rather than SDN

networks can lead to compatibility issues and inaccurate performance like some attacks behave differently in

SDN environments. The In SDN dataset involves a variety of attacks related to SDN networks like DDoS, Probe,

DoS, Brute force, web attack, botnet and U2R attacks, in addition to normal traffic. This dataset is available in

PCAP and CSV formats and involves 343,889 samples with 84 features generated utilizing the CIC Flow Meter

tool. The distribution of data instances is detailed in Table 1.
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Table (1): Details of The Data Instance of In SDN.

Class label Samples

Normal 68,424

Attacks

Attacks

121,942

Probe 98,129

DoS 53,616

Brute force 1,405

Web-attack 192

Botnet 164

U2R 17

Total 343,889

3.2 Data preparation

Preprocessing the data is crucial to ensuring optimal model performance. The process starts by integrating all
CSV files into a single data frame. Data cleaning involved systematically removing null, infinite values, and
duplicate records to keep data integrity.

Next, feature engineering was used, and labels were converted to a numerical format utilizing one-hot encoding.
The features were standardized using StandardScaler to ensure measurement consistency through all input
dimensions based on the following formula:

� = ((� − �))/�
(1)

Where z is normalized value, x is original value, μ is mean and σ is standard deviation. This step handles the

large variations in feature ranges.

Finally, the dataset was divided utilizing stratified sampling to preserve a consistent distribution of categories

across the training set (70%), validation set (10%), and testing set (20%). Table 2 shows the detailed distribution

of the samples after preprocessing.

Table (2): Distribution of Samples Across Dataset Splits.

Class Training Samples Testing Samples

DDoS 85,359 36583

Prob 68,690 29439

Normal 47,897 20527

DoS 37,531 16085

BFA 984 421

Web-Attack 134 58

Botnet 115 49
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U2R 12 5

3.3 Proposed Model

We propose DL-based hybrid architecture combining CNNs and LSTM systems to improve performance of NIDS. The

block diagram of the proposed hybrid architecture is depicted in Figure 2 which is designed to classify sequential network

traffic data by leveraging complementary strengths of CNNs and LSTM systems.

The architecture starts with input layer that receives a pre-processed 1D-feature vector and is then followed by

two subsequent blocks of 1D-CNN layers for spatial feature extraction. The first block has two convoluted

layers with 32 and 64 filters, respectively, while the second block has layers with 128 and 256 filters. Each layer

utilizes kernel size of 3, stride value of 1, ‘same’ padding and Re LU activation function. A Max Pooling layer is

used after each CNN block to decrease spatial dimensions, maintain critical information and minimize

computational complexity.

Figure (2): Block Diagram of the Proposed Hybrid CNN-LSTM Architecture.

We employ batch normalization and dropout to improve model training and generalization. The training is

stabilized by utilizing batch normalization after each CNN block to avoid gradient problems. Dropout layers

randomly deactivate neurons and reduce risk of over-fitting.

The feature maps from the convolutional base structure are then fed into a sequential modeling unit containing

two LSTM layers. The first LSTM layer contains 128 units and returns the complete sequence for the next layer.

Its output is processed by batch normalization and a dropout layer (rate = 0.3). A second LSTM layer, containing

32 units, produces a compressed context vector, which is also applied and normalized using dropout.

The model then passes through a fully connected (dense) 32-unit layer with Re LU activation, followed by

further batch normalization and a final dropout layer (rate = 0.2). The network terminates with an output layer

that uses the Softmax activation function for multiclass classification across the eight attack classes.
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This model was constructed with the Adam optimizer and a learning rate of 0.001. Multi-class classification was

performed with categorical cross-entropy as the loss function. The process of training was carried out using a

batch size of 128 and 100 epochs. Dropout layers with rates of 0.3 and 0.2 were applied after the first LSTM

layer and before the output layer, respectively, to mitigate over-fitting. Table 3 summarizes the hyper parameter

settings.

Table (3): Parameter Settings of The Proposed Model.

Parameter Value

Batch Size 128

Epoch Size 100

Optimizer Adam

Learning Rate 0.001

Dropout Rate 0.2, 0.3

Loss Function categorical cross-entropy

4 Evaluation Results

This section introduces a comprehensive evaluation of the proposed hybrid CNN-LSTM model's performance.

4.1 Experimental Setup

The proposed model was designed and executed using the Python programming language, where the Keras API

and Tensor Flow backend library were utilized for all proposed approaches. All experiments were performed on

an NVIDIA GeForce RTX 3080 GPU.

The main libraries involved Pandas and NumPy for handling data, Sickie-learn for data preprocessing like

Standard Scalar for feature standardization, stratified data splitting and Imbalanced-learn for applying the

SMOTE technique only to the training data.

4.2 Evaluation Criteria

The hybrid CNN-LSTM model was estimated by use of conventional classification metrics[29]:

Accuracy (AC): The proportion of accurate predictions over the total traffic.

�� = � � +� �
� � +� � + �� + ��

(2)

Precision (P): Fraction of the attacks correctly facilitated overall the instances of attacks (false alarm rate).

� = � �
� � + ��

(3)

Recall (R): The proportion of actual attacks that were identified properly.

� = � �
� � + ��

(4)



Alkadhim Journal for Computer Science, Vol. 3, No. 4 (2025)

64

F1-Score (F1): The harmonic mean of Precision and Recall which gives a single balanced metric.

�1 = 2 × ��� × ���
��� + ���

(5)

These metrics are computed on the grounds of True Positives (TP), True Negatives (TN), False Positives (FP)

and False Negatives (FN).

4.3 Experimental Results

The experimental evaluation of our proposed model shows critical insights into feature selection, architectural

interaction and detection performance across various attack categories. There were six different groups of

features tested systematically and represent various approaches to selecting features as follows:

Group 1: Contains all feature sets of the In SDN dataset which consists of 83 features obtained on each flow [28].

Group 2: Comprised of 48 sets of features [28] in the In SDN dataset.

Group 3: Comprised of the 18 group of features [30] in the In SDN dataset.

Group 4: There are 14 feature sets [31] in the In SDN dataset.

Group 5: Consists of 9 feature sets [17] in the In SDN dataset.

Group 6: It has 6 feature sets [32] in the In SDN dataset.

The overall multi-classification measures obtained in Table 4 indicate that Group 1 which implemented all 83

features, performed optimally with an accuracy of 99.63%, a precision of 99.58%, and an F1-score of 99.61%.

The complete feature representation in Group 1 allowed the model to acquire complex patterns critical to the

efficient detection of intrusions. In particular, Group 6, which had only 6 features, still scored highly at 98.78%,

indicating that this group can be deployed efficiently in a resource-constrained environment.

Table (4): The overall Multi-classification Metrics.

Metric TPR TNR FPR FNR Accuracy Precision F1 -Score

Group 1 99.63% 99.95% 0.05% 0.37% 99.63% 99.58% 99.61%

Group 2 99.06% 99.87% 0.13% 0.94% 99.06% 99.04% 99.04%

Group 3 98.44% 99.78% 0.22% 1.56% 98.44% 98.42% 98.41%

Group 4 93.51% 99.07% 0.93% 6.49% 93.51% 93.68% 93.38%

Group 5 98.15% 99.74% 0.26% 1.85% 98.15% 98.14% 98.12%

Group 6 98.78% 99.83% 0.17% 1.22% 98.78% 98.72% 98.75%

Table 5 shows per-class performance, where it can be observed that there are notable differences in the various

types of attacks. majority classes such as DDoS and Normal traffic have good accuracy rate of more than 99%

over all feature subset groups, whereas minority classes such as U2R and Web-Attack always have notably
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lower detection effectiveness in terms of precision and recall.

Table (5): Detailed Per-Class Classification Performance.

Metric BFA BOTNET DDoS DoS Normal Probe U2R
Web-

Attack

Accuracy

Group 1 99.84% 99.99% 99.99% 99.86% 99.84% 99.80% 100.00% 99.95%

Group 2 99.86% 99.99% 100.00% 99.86% 99.24% 99.24% 99.99% 99.94%

Group 3 99.83% 99.99% 99.98% 99.31% 98.64% 99.18% 99.99% 99.94%

Group 4 99.74% 99.98% 95.84% 98.50% 98.24% 94.79% 99.99% 99.95%

Group 5 99.84% 99.98% 99.96% 99.03% 98.39% 99.15% 99.99% 99.96%

Group 6 99.89% 100.00% 99.93% 99.01% 99.36% 99.44% 99.99% 99.95%

Precision

Group 1 79.02% 85.71% 99.99% 99.62% 99.66% 99.53% 100.00% 0.00%

Group 2 82.88% 87.80% 99.99% 99.72% 99.54% 97.55% 0.00% 40.00%

Group 3 91.71% 85.71% 99.97% 98.28% 97.55% 97.42% 0.00% 46.15%

Group 4 95.61% 69.23% 89.73% 97.25% 96.32% 94.99% 0.00% 0.00%

Group 5 96.74% 77.27% 99.90% 97.10% 97.07% 97.39% 0.00% 85.71%

Group 6 94.04% 94.74% 99.99% 97.03% 98.25% 98.69% 0.00% 0.00%

Recall

Group 1 84.27% 100.00% 99.99% 99.51% 99.52% 99.76% 60.00% 0.00%

Group 2 84.62% 100.00% 100.00% 99.40% 96.59% 99.85% 0.00% 5.26%

Group 3 65.73% 100.00% 99.98% 97.34% 95.51% 99.79% 0.00% 31.58%

Group 4 38.11% 100.00% 99.62% 93.09% 94.72% 86.34% 0.00% 0.00%

Group 5 62.24% 94.44% 99.98% 96.74% 94.73% 99.72% 0.00% 31.58%

Group 6 77.27% 100.00% 99.82% 96.65% 98.55% 99.36% 0.00% 0.00%

F1-score

Group 1 81.56% 92.31% 99.99% 99.57% 99.59% 99.65% 75.00% 0.00%

Group 2 83.74% 93.51% 99.99% 99.56% 98.04% 98.68% 0.00% 9.30%

Group 3 76.58% 92.31% 99.98% 97.81% 96.52% 98.59% 0.00% 37.50%

Group 4 54.50% 81.82% 94.42% 95.13% 95.51% 90.46% 0.00% 0.00%

Group 5 75.74% 85.00% 99.94% 96.92% 95.88% 98.54% 0.00% 46.15%

Group 6 84.84% 97.30% 99.91% 96.84% 98.40% 99.03% 0.00% 0.00%

These findings are graphically confirmed in the confusion matrices in Figure 3 which clearly show strong

diagonal concentrations on most of the classes and lowly predicted minority classes in all groups of feature set.

Similarly, the receiver operating characteristic (ROC) curves in Figure 4 indicate the ability of the model to be

discriminative with the curves of the majority classes moving towards an optimal top-left corner, but the

minority classes have reduced reparability. The Area Under the Curve (AUC) for each class exceeded 99% for

majority classes and showed significant improvement for minority classes after SMOTE application, with U2R
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and Web-Attack AUC rising from ~70% to 95%.

(a): Group1 (b): Group2

(c ): Group3 (d): Group4

(e): Group5 (f): Group6

Figure (3): Confusion Matrix for each Group.
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(a): Group1 (b): Group2

(c ): Group3 (d): Group4

(e): Group5 (f): Group6

Figure (4): ROC for each Class of each Group.

Figure 5 illustrates the training dynamics under which all feature set groups converge steadily with consistent

performance in accuracy and loss metrics. The fact that there is a minimal gap between training and validation

curves indicates that it generalizes effectively and eliminates any chance of over-fitting, thus justifying the

architectural design choices, especially the dropout and batch normalization.
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(a): Group 1

(b): Group 2

(c ): Group 3
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(d): Group 4

(e): Group 5

(f): Group 6

(a) Training and Validation Accuracy. (b) Training and Validation Loss Curve.

Figure (5): Training, Validation and Loss of each Group.

To mitigate the high-class imbalance problem that we have observed during the initial results, we used the

SMOTE technique on Group 1. As the results summarized in Tables 6 and 7 show, the utility of the minority

class increased significantly while maintaining excellent overall performance results.

Table (6): Detailed SMOTE Per-Class Classification Performance on Group 1.

Metric BFA BOTNET DDoS DoS Normal Probe U2R

Accuracy 99.99% 100% 99.99% 99.90% 99.83% 99.85% 100%

Precision 98.28% 100% 99.99% 99.68% 99.71% 99.76% 71.43%

Recall 99.65% 100% 99.99% 99.71% 99.43% 99.72% 100%

F1 Score 98.96% 100% 99.99% 99.69% 99.57% 99.74% 83.33%
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Table (7): The overall SMOTE Multi-classification Metrics on Group 1.

Metric TPR TNR FPR FNR Accuracy Precision F1-Score

SMOTE 99.76% 99.97% 0.03% 0.24% 99.76% 99.78% 99.76%

The visual evidence of the performance enhancement resulting from the introduction of SMOTE is presented in

Figure 6, which shows the confusion matrix of the balanced dataset, and in Figure 7, which illustrates the ROC

curves for each class in the balanced dataset. The confusion matrix shows increased accuracy across all attack

categories, with the most significant improvement in the minority classes which had been problematic to classify

earlier. The ROC curves indicate improved class discrimination, as they now exhibit significantly stronger

discriminatory power.

Based on Figure 8, it can be observed that the training dynamics of the balanced dataset have steady

convergence patterns which confirms the idea that the model has already learned the information of the synthetic

samples, and the model has retained its generalization capacity.

Figure (6): Confusion Matrix for Balance Dataset. Figure (7): ROC for each Class of Balance Dataset.



Alkadhim Journal for Computer Science, Vol. 3, No. 4 (2025)

71

(a) Training and Validation Accuracy. (b) Training and Validation Loss Curve.

Figure (8): Training, Validation and Loss of Balance Dataset.

4. Discussion

The comprehensive experimental evaluation provides valuable insights into the adequate performance of the

proposed hybrid CNN-LSTM design for SDN intrusion detection. The results, presented in Table 4, confirm that

the model achieves excellent performance across a wide range of feature combinations, with Group 1 achieving

the highest accuracy of 99.63%. This best performance underlines the importance of comprehensive feature

representation for effective spatial and temporal pattern learning in network intrusion detection.

Analysis of feature selection reveals notable performance of model. Although Group 1 yields best performance,

the high performance of Group 6 with six features only and accuracy of 98.78% which shows that well-selected

feature subsets can maintain high detection rates. This result is especially valuable in real-time SDN

implementations where constraints on resources are of special concern. Nonetheless, the considerable decrease

in the performance of Group 4 which received accuracy of 93.51% highlights the fact that the quality and

relevance of the chosen features are more important than their number.

Critical observations we made from analyzing the performance of each category in Table 5 involve notable

impact of category imbalances on detection capability. Initial results show significant challenges in detecting

minority attack categories like Web attack and U2R attacks, exhibiting recall rates of 0% and 60% respectively,

in Group 1. This limitation highlights fundamental challenge in network security systems where rare but

potentially damaging attacks may go undetected due to imbalances in training data.

The SMOTE application shows notable improvements in handling class imbalances as shown in Tables 6 and 7.

The balanced dataset achieves an overall accuracy of 99.76% with notable improvements in minority class

detection. Most notably detection of web attacks and U2R shows tremendous improvements and attains recall of

100% with F1-scores of 67.26% and 83.33%, respectively. This notable improvement confirms that hybrid

architecture has the inherent capability to learn complex patterns of rare attacks when provided with balanced

training data. The application of SMOTE notably improved detection of minority attack classes with U2R recall

increasing from 60% to 100% and Web Attack from 0% to 100%, showing critical role of data balancing in

practical IDS deployment.

The training dynamics noticed through the experiments especially in Figures 5 and 8, show consistent and stable

convergence patterns across all feature set groups. The minimal difference between training and validation

metrics with the smoothness of the loss curves which indicates effective generalization and absence of

overfitting. This training stability which was achieved through the careful implementation of the batch

normalization and dropout layers which demonstrates the robustness of the architectural design.
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The visual evidence presented in Figures 3 and 6 for confusion matrices and Figures 4 and 7 for ROC curves

confirms the model's performance. The confusion matrices show strong diagonal concentrations which indicate

accurate classification for most attack types, while the ROC curves demonstrate excellent discrimination with

areas close to the ideal upper left corner.

5. Conclusion

In conclusion, the current study has demonstrated and proven the usefulness of hybrid CNN-LSTM model to

detect intrusion in SDN environments. Experimental testing has shown that the suggested architecture will

provide even better performance, reaching the accuracy of 99.63% at the complete feature size, and that it

maintains a high detection accuracy rate even on reduced feature dimensionality. The current study underscores

the need to address class imbalance in cyber-security applications, demonstrating the high returns of applying

SMOTE, minority-class detection reached 100% recall for previously undetectable attack types. The architecture

combines spatial feature extraction via CNN layers with temporal pattern recognition via LSTM networks,

providing a powerful framework for detecting advanced cyber threats in SDN environments. The framework’s

flexibility across feature configurations offers practical deployment solutions for a range of operational scenarios,

from resource-limited environments to critical infrastructure protection. The study, therefore, offers an important

contribution to the development of intelligent security solutions to SDN that can provide high detection rates as

well as computational efficiency whilst facing the major issues related to optimization of features as well as data

imbalance. The future work will focus on the real-time implementation of the system, adaptive learning

mechanisms for evolving threats and integration with SDN controllers to facilitate automated security response

systems.
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