Alkadhim Journal for Computer Science, Vol. 3, No. 4 (2025)

Open Access

ISSN: 3007-1437 (Online), ISSN: 3007-1429 (Print)

IR H gl Alkadhim Journal for Computer Science | KJ C S
(KJCS) "

Academic Scientific Journals

ALKADHIM JOURNAL

Journal Homepage: https://alkadhum-col.edu.ia/JKCEAS h?,.\z FOR COMPUTER SCIENCE

Practical Implementation of Software Metrics to improve

Maintainability in Open-Source Systems

'Nadia Mahmood Hussien *

'Department of Computer Science, College of Science, Mustansiriyah University, Baghdad — Iraq

Article information

Article history:

Received: November, 14, 2025
Accepted: December, 16, 2025
Available online: December,25, 2025

Keywords:
Lines of Code (LOC), Cyclomatic Complexity,
Open-Source Software.

*Corresponding Author:
Nadia Mahmood Hussien
nadia.cs89@uomustansiriyah.edu.iq

DOI:
https://doi.org/10.61710/Kjcs.v3i4.135

This article is licensed under:
Creative Commons Attribution 4.0 International License.

Abstract

Common software metrics and maintainability measures
in open-source Java are examined in this research. The
authors test the major object-oriented metrics—Coupling
Between Objects (CBO), Lines of Code (LOC),
Weighted Methods per Class (WMC), Lack of Cohesion
of Methods (LCOM), Depth of Inheritance Tree (DIT),
and Cyclomatic Complexity—against real-world
maintainability indicators like bug counts, code
modifications, and developer turnover. There is currently
no workable, repeatable, and experimentally verified
process that combines measurement analysis with actual
maintainability indications in freely available systems,
although a wealth of research on software metrics. The
authors use Python data analysis and visualization to find
statistically significant patterns in Spearman correlation
analysis.

The findings indicate that the strongest predictors of
maintainability concerns are Connectivity Among
Entities (p = 0.82) and cyclic Structure (p = 0.77),
subsequent to WMC (p = 0.70) and LOC (p = 0.65). The
smallest and insufficient predictor of flaw frequency is
DIT (p = 0.30). Finally, this study ties the gap of
theoretical academic measures and the real-world aspects
of software engineering.

1) Introduction

Maintainability of the software has become one of the most important quality of current software engineering
and has a direct influence on the life span, affordability, and alteration resiliency of the system [1]. Software
systems have grown in scale remarkably, and with that growth, it is becoming increasingly difficult to guarantee
that they are maintainable by having clean, maintainable code, requiring quantitative tools, which determine the
degree of software ssustainability at an early stage of the development lifecycle [2]. Object-oriented design
measures have entered this field, providing quantitative measures of the quality of code by measuring structural

and behavioral properties of code [3].

The Chidamber and Kemerer (CK) metric suite, i.e., Coupling Between Objects (CBO), Weighted Methods per
Class (WMC), Lack of Cohesion of Methods (LCOM), and Depth of Inheritance Tree (DIT), are just a few of

mailto:nadia.cs89@uomustansiriyah.edu.iq
https://doi.org/10.53523/ijoirVolxIxIDxx
https://creativecommons.org/licenses/by/4.0/

Alkadhim Journal for Computer Science, Vol. 3, No. 4 (2025)
them that have been confirmed time and again on their ability to predict defect-proneness and maintenance (4, 5].
More recent work adds cyclomatic complexity to measure the complexity of control flow, taking modifiability
modeling even further [6].
while research has advanced metric theory and prediction models, real-world industrial projects often skip
systematic metric application due to tool integration challenges, limited data access, and difficulty interpreting
results [7]. Even as open-source software (OSS) ecosystems provide rich empirical data for validation, the lack
of reproducible, practitioner-ready worktlows limits their impact on day-to-day software practice [8,9].
A transparent, repeatable, and practical pipeline that relates object-oriented metrics to useful supportability
insights for open-source Java projects is the focus of this research. Our research presents an automated, hands-on
procedure for metric extraction, maintainability indicator collecting, and Spearman statistical analysis.
Interpretable visuals and actionable insights rather than numerical correlations combine academic quality with
practical value. A customizable framework for academic and industry research is created by validating the
suggested technique using genuine open-source software project. This research applies to software quality
assurance, CI/CD pipeline integration, technical debt management, software engineering education, and static
code analysis tool design. Structure of the paper: Section 2 discusses relevant work and the research gap; Section
3 describes the methodology, including project selection, metric extraction, and statistical analysis; Section 4
discusses results and comments; and Section 6 closes with major conclusions and future prospccts.

2) Related Work and Research Gap

In the past few years, the software engineering community has greatly increased its interest in finding answers
about the practical effects of object-oriented metrics on software maintainability, driven by both the proliferation
of open-source repositories and by new data mining opportunities. Another example is provided by Lee et al.
(2023) [11], who formulated an automated combination of static code analysis and issue tracker to evaluate
maintainability of a Java project, which resulted in high correlations among conventional measures and
maintenance effort. On the same note, Park and Kim (2022) [12] studied the dynamics of software metric change
over time to demonstrate how the evolution over time leads to maintainability and the propensity to defects in
agile settings.

In addition, Zhang et al. (2024) [13] used hybrid machine learning models that combined object-oriented metrics
with developer activity data to improve industrial system maintainability forecast accuracy. Although these
research improve the profession, they also indicate numerous persisting obstacles. They often concentrate on
predictive modeling without providing replicable, end-to-end processes. Most ignore their conclusions' practical
interpretability, leaving developers without actionable insights. Despite the quantity of publicly accessible data,
few research have directly applied such methodologies to open-source Java projects.

With an emphasis on maintainability, code complexity, and documentation quality, the present research by
(Fawareh, H. J in 2025) investigates how Al-generated code affects software quality. We assessed important
metrics, such as upkeep index (M), line of code (LOC), cyclical complexity (CC), Turing volume (V), and
comment ratio, by contrasting Al-generated code with open-source code from GitHub for three jobs of varied
difficulty (easy, medium, and hard). The results show that while Al-generated code is typically more verbose, its
cyclical complexities tends to decrease on simpler jobs, which lowers mistake rates. Maintainability greatly aids
workers with machine-generated program in complex tasks and provides greater documentation based on
suggestions| 14].

As a result, there's continues to absence of a concise, cohesive, and supported by evidence methodology in the
scientific community that methodically links real sustainability indications in freely available Java applications
with object-orientated metrics[10].

A scarcity of analyses that combine measurement gathering, maintenance indicators and statistical inference into
an unambiguous and repeatable procedure that can be applied to OO systems is the cause of this hole rather than
the overall lack of metric investigation. This research addresses this gap in three ways. A new, hands-on
methodology unifies metric extraction, data cleaning, statistical correlation, and visual interpretation in an open-

88

Alkadhim Journal for Computer Science, Vol. 3, No. 4 (2025)
source, repeatable tool chain. The study emphasizes interpretability and usability so academics and practitioners
may apply the results to real-world codebases. The suggested technique is experimentally evaluated using
chosen open-source Java projects, proving its relevance and applicability across academic, industrial, and open-
source software settings. Table 1 compares previous work.

Table (1) :Related Work Comparison

Limitation Addressed in This

Stud A h Tools Used S
udy pproac se cope Study
L t al. Stati lysis +1 ; ; 5 g
(eze 062 ;; atie irrljcﬁ:g 1ssue Custom framework Java projects Adds reproducible pipeline
Park & Ki T | metri Adds end-to-end
ar m SR r.ne e Statistical methods Agile Java projects : > eneo .en
(2022) analysis implementation
Zhang et al. ML + d.e\./eloper ML models, activity Trndhustria systerns Improves intc?rpretability,
(2024) activity logs usability
Mettie astraction & Novel reproduc.lblei wor.k.ﬂow;
Fawareh, H. CK Tool, Open-source enhances maintainability,
stats + , ; ;
] (2025) _ o JavaParser, Python Java projects complexity, and documentation
visualization .
quality.
This study Metric extraction + CK Tool, JavaParser, Open-source Java Novel reproducible,
(2025) stats + viz Python projects interpretable workflow
3) Methodology

This section describes a step-by-step strategy for assessing object-oriented software metrics and maintainability
indicators in open-source Java projects. Automated metric extraction, focused data collecting, rigorous statistical
analysis, and relevant visualization provide scientific rigor and practical applicability.
Transparency, repeatability, and scalability make the technique suited for academic and industry research. The
authors include accompanying UML diagrams of system components, processes, and data flows to assist readers
and practitioners understand the framework's architecture.

3.1 Project Selection

Three Java-based, medium-sized, regularly maintained open-source projects on GitHub were chosen to make the
dataset relevant, diverse, and current. This selection of projects covers a range of Java ecosystem services and
provides a good empirical research base. Approved projects as will:

1. JUnit : A typical Java development and continuous integration pipeline unit testing method.
ii. Apache Commons Lang : A utility library used in many applications for improving standard Java
classes.

iii. Google Gson : A robust package converts Java objects to JSON and inversely for simple
information serialization and deserialization.

Selection criteria have been thoughtfully developed to ensure substantial and generalizable findings. Each
project in the poll had over 1,000 GitHub stars, showing community acceptability and usefulness. Since all
selected projects have had continuous commits and maintenance for two years, the data represents current
development procedures. Each project has a 10,000-50,000-line codebase that balances complexity and
manageability for deep analysis. These criteria focus research on technically and practically relevant projects,
providing a strong foundation for software metrics and maintainability indicators.

3.2 Software Metric Extraction

The authors extracted important software metrics from chosen Java applications using two major tools:
i. CK Tool: A tool for gathering Chidamber and Kemerer (CK) object-oriented metrics.

&9

Alkadhim Journal for Computer Science, Vol. 3, No. 4 (2025)
ii. JavaParser: JavaParser is a strong code analysis package that extracts structural information from Java
Abstract Syntax Trees (ASTs), the procedure is:
a) Every Java component was handled one after the other.

b) Measurements from the CK Tool were obtained using the default parameters.

c) Java Parser was set up to capture AST-driven compositional metrics by traversing every class and
method.

d) Utilizing distinct class identities (such as the class label and package), obtained measurements from the
two programs were combined.

e) During analysis of statistics, each result were kept in organized CSV files.

In table 2, extracted metrics include:
Table (2): Description of Software Metrics Used

Metric Description
Lines of Code (LOC) Counts the number of lines in a class or method.
Coupling Between Objects (CBO) Measures interdependence between classes, affecting modularity and reuse.

Lack of Cohesion of Methods (LCOM) | Assesses how closely related a class’s methods are.

Weighted Methods per Class (WMC) Captures overall class complexity by summing method complexities.

Depth of Inheritance Tree (DIT) Indicates a class’s position in the inheritance hierarchy.

Cyclomatic Complexity Quantifies control flow complexity using McCabe’s metric.

3.3 Collection of Maintainability Indicators

Three primary variables measured maintainability. Git log-extracted file change frequency predicts monthly file
commits. Second, the amount of GitHub issue tracker requests for files or classes. Developer churn—the number
of developers who worked on a file or class throughout the study—is the third indicator. Indicators reveal system
stability, evolution, and maintenance overhead.

3.4 Data Integration and Cleaning

The following integration and preprocessing was done on the extracted metrics for software and serviceability
parameters:
I. Integration of Data: To guarantee proper record arrangement, software performance and maintainability
signals were combined utilizing distinctive identifications like class name and package path.

II. Cleaning Data: Entries with incorrect or lacking information were eliminated. When applicable,
anomalies were found and eliminated utilizing the median range (IQR) approach. Min-Max adjustment
was used to normalize numerical data so that they could be compared across various measures.

III. Execution: Python 3.9 was used for each phase, along with the Pandas package for data transformation,
filtering, and merging. During further investigation, the cleaned dataset was exported as structured CSV
files.

A summary of the workflow is given in Table 3.
Table (3) :Data Processing Workflow

Step Description Tool Used
Integration | Merge software metrics with maintainability indicators using unique identifiers | Python Pandas
Cleaning Remove missing/inconsistent entries, handle outliers, normalize values Python Pandas

3.5 Overview of the Workflow

The study was performed using Python (version 3.9) and a well described methodology to assure consistency in
metric extraction, data preparation, statistical testing, and visualization. Pandas for data loading, cleaning,
merging, and transformation; SciPy for Spearman rank correlations and p-values; and Seaborne and Matplotlib
for heat maps, scatter plots, and histograms.

The key steps of the workflow were

90

i.
ii.
ii.
iv.
V.
vi.

Alkadhim Journal for Computer Science, Vol. 3, No. 4 (2025)
Import Data Frames in Pandas and maintainability data and software metrics.
Make data clean of incomplete or inconsistent records.
Combine files based on common identifiers (e.g., file path, class names).
Calculate the correlations of the metrics and indicators of Spearman correlation coefficients.
Calculate the statistical significance (alpha = 0.05).
Picture relationships to favor interpretation and insight.

This worktlow is clear, repeatable and scalable and so others find it easy to replicate or build on anything in this
study in subsequent research.

3.6 Functional and Non-functional Requirements

A.

Functional requirements: describe the particular behaviour and activities of the system, including
processing of data, extraction of metrics, and genering of visualizations. In the case of empirical
software analysis tools, these functions are vital so that the computation of metrics and the complexity of
software stated in the form of maintainability can be done automatically [15-16].

Non-functional requirements: define the quality attributes of the system quality example, this might
include performance, scalability and reproducibility. In an analytical tool to be used within research,
modularity is paramount, since the tool is intended to be reused, validated, and flexible to different
environments and databases; speed of calculation and traceability of ever-changing datasets is also
important [17].

The functional and non-functional requirements have been summarized in tabulated form in tables 4 and 5,
respectively.

Table (4): Functional Requirements

ID Requirement
FR1 | The system shall import and parse metric data from Java source code.
FR2 | The system shall extract object-oriented metrics (e.g., CBO, LCOM, LOC, etc.).
FR3 | The system shall collect maintainability indicators from version control logs.
FR4 | The system shall merge software metrics with maintainability data.
FRS | The system shall compute statistical correlations between metrics and indicators.
FR6 | The system shall visualize relationships using heat maps and scatter plots.
FR7 | The system shall generate reports summarizing analytical results.

Table (5): Non-Functional Requirements

ID Requirement
NFR1 | The system should be developed using Python 3.9 and compatible libraries.
NFR2 | The analysis tools should process data for projects with at least 10,000 LOC.
NFR3 | The visualizations must be clear, accurate, and exportable.
NFR4 | The correlation analysis should complete within 2 minutes for medium datasets.
NFRS5 | The system should ensure reproducibility of results by saving configurations.
NFR6 | The tool must be modular and extensible for future metric integrations.

3.7 UML Diagrams

1- Use case : This use case diagram describes the primary actors in the system—Developer and Metrics

Analyzer—and shows how they relate to each other. The developer pushes the projects and executes the
metric extraction toolsets, where the metrics analyzer processes it and provides graphical reports. Finally,
the developer gets feasible suggestions on how best to make the code maintainable.

91

Alkadhim Journal for Computer Science, Vol. 3, No. 4 (2025)

Empirical Software Metrics Analysis
[:Run Metric Extraction_'
> ¢1one Project;f,"_' y

Deﬁéloper\ o
’\-_ -

(Receive Recommendations)

_-Arnalyze Metricéu :
| g e

1

\ —
Metrics_Analyzer

_-_Visualize Res ults_-_)

Figure (1): Use Case Diagram for Software Metrics Analysis System
2- Activity Diagram: The given activity diagram can demonstrate the chronological working process of
the empirical analysis starting with cloning the repositories and continuing with the work on extracting
metrics, data processing, performing analysis and its interpretation, and finally working out the
conclusions. It explains a process-by-process pipeline of data and shows what needs to be done in order
to attain reproducibility and transparency.

Clone GitHub projects |
| Run CK Tool to extract software metrics

¥

' Collect maintainability indicators from Git logs

v

Merge and clean data using Python Pandas 'I

v

| Perform statistical analysis (correlations, p-values)

Visualize results (plots)

| Draw conclusions and prepare recommendations

®

Figure (2): Activity Diagram of the Workflow
3- Sequence Diagram: The given sequence diagram explains the flow of interaction between the elements
that are the Developer and different tools and services in the process of gathering and analyzing data. It
focuses the exchanging of data and control messages and characterizes the dynamic behavior and
interdependencies involved in the system

92

Alkadhim Journal for Computer Science, Vol. 3, No. 4 (2025)

[

Diciosinier | GitHub | | CK Tool | | Python Script |

| Clone Projects | i

-~
> 1 |

|_ Project Files

| Run Metric Extraction

| Metrics Data (CSV)

, Collect commit logs and issues >

. Logs and Issue Data

| Merge & Analyze Data

| Correlation Results & Visualizations
<

' Draw Conclusions

Developer
)

‘ GitHub ‘ CK Tool | Python Script

Figure (3): Sequence Diagram of Interactions Between Developer and Tools

4- Class diagram: The class diagram is a static structure diagram that visualizes the system’s architecture

by showing its classes, attributes, operations, and the relationships between objects. Table 4 provides the
detailed breakdown of the components depicted in the diagram.

© Repository (€) Developer
o repoName: String i
) 1| o devName: String
o url: String o commits: int
o stars: int

o lastUpdated: Date o activeMonths: int

authors

© Commit

contains o commitlD: String
o date: Date
o message: String

man,
mod ifies

man many,

@ SoftwareClass

o name: String

o LOC: int

o CBO: int

o LCOM: int

o WMC: int

o DIT: int

o CyclomaticComplexity: int

1]
relates to
1]

@Maintainabilitylndicators
o fileChanges: int

o bugCount: int

o dewveloperChurn: int

Figure (4): Class Diagram of the Proposed Analysis Framework

Table 6 shows the main classes, their objectives, and important properties in the proposed class diagram. Figure
6 depicts the analytical framework's structural basis.

Table (6): Summary of Main Classes in the Analysis Framework

Class Purpose Key Attributes
Software Class Stores software metrics for a name, LOC, CBO, LCOM, WMC, DIT,
code unit. Cyclomatic Complexity
Maintainability Tracks change frequency, File Changes, bug Count, developer Churn
Indicators bugs, developer churn.
Repository Represents the project Repo Name, url, stars, last Updated

93

Alkadhim Journal for Computer Science, Vol. 3, No. 4 (2025)

repository.
Commit Details a single code change. Commit ID, date, message
Developer Represents a project devName, commits, active Months
contributor.

5- State diagram

The state diagram (Figure 5) shows a source code file's duration from creation to modification, testing, release,
and possibly change after problem identification.

tests passed

(Tested
release deployed

Released |

Figure 5: State Diagram of Source Code File Lifecycle

6- Component program

Component diagram (Figure 6) shows the modular structure of the software system and data flow across code
repositories, metric extraction tools, analysis scripts, and display interfaces.

Empirical Software Metrics System\

]
GitHub Repository

2]
CK Metrics Tool

L
Metric Data CSV

g1
Python Analysis Script

]
Visualization Module

]
Developer Dashboard

Figure (6): Component Diagram of the System Architecture

4. Results and Discussion

94

Alkadhim Journal for Computer Science, Vol. 3, No. 4 (2025)
The statistical tfindings from analyzing software metrics and maintainability indicators in three Java projects are
shown here. The authors assessed monotonic correlation strength and significance using Spearman's rank
correlation coefficient (p) for non-parametric data. Table 7 shows high connections between software measures
like CBO, WMC, and Cyclomatic Complexity and maintainability indicators like bug count and file

modifications.
Table (7): Spearman Correlation Matrix Between Software Metrics and Maintainability Indicators

Metric Bug Count File Changes Developer Churn
Coupling Between Objects (CBO) 0.82 ** 0.75 ** 0.68 **
Lines of Code (LOC) 0.65 ** 0.72 ** 0.60 **
Weighted Methods per Class (WMC) 0.70 ** 0.66 ** 0.62 **
Lack of Cohesion of Methods (LCOM) 0.55 ** 0.48 * 0.44 *
Depth of Inheritance Tree (DIT) 0.30 0.25 0.20
Cyclomatic Complexity 0.77 ** 0.70 ** 0.65 **

*(p <0.05=, p<0.0] =** — significant)
Table 8 shows bug count correlation coefficients, p-values, and interpretations. CBO and Cyclomatic
Complexity have substantial positive associations (p = 0.82, 0.77; p < 0.001), but DIT is not
significantly related.

Table (8): Bug Count vs. Key Metrics Spearman Correlation and Significance Test

Metric Spearman's p p-value Interpretation
Coupling Between Objects 0.82 <0.001 Strong positive correlation
(CBO)

Lines of Code (LOC) 0.65 0.002 Moderate positive
Weighted Methods per Class 0.70 0.001 Moderate positive
Lack of Cohesion of Methods 0.55 0.020 Moderate positive

Depth of Inheritance Tree 0.30 0.120 Not statistically significant
Cyclomatic Complexity 0.77 <0.001 Strong positive correlation

Table 9 provides summary statistics for all analyzed variables, offering context on their mean, median,
variability, and range.

Table (9): Summary Statistics of Software Metrics and Maintainability

Metric Mean Median Std. Dev. Min Max
Coupling Between Objects (CBO) 4.7 4 2.8 0 10
Lines of Code (LOC) 265 250 180 50 700
Weighted Methods per Class 10.9 10 713 2 25
Lack of Cohesion of Methods 0.37 0.30 0.25 0.05 0.80
Depth of Inheritance Tree 1.6 1 1.3 0 4
Cyclomatic Complexity 7.6 7 55 1 18
Bug Count 6.0 5 7.0 0 20
File Changes 16.0 15 16.5 1 50
Developer Churn 3.3 3 2:2 1 8

95

Alkadhim Journal for Computer Science, Vol. 3, No. 4 (2025)
According to the heat map (Figure 7), CBO, LCOM, and WMC cluster with files with more defects or
modifications. High coupling or complexity classes changes more frequently because CBO and WMC are most
positively associated with defect-prone and unstable files. LCOM shows a minor relationship with bug
frequency, validating earlier research that poor cohesion may affect maintainability. Cyclomatic Complexity is a
little connected. with developer turnover, suggesting that developers may avoid or rewrite complicated classes to

decrease maintenance.

Spearman Correlation Heatmap

CyclomaticComplexity

bug_count

file_changes -

CyclomaticComplexity H E

developer chum - 087 097 097 097 099 0.97

! . . . i]

] Q [*) - 3 =]

a g z <] a H

= ki g

g

g

|

0.99

0.99

ges -

file_chan

1.00

0.99

0.97

-0.98

-0.97

0.96

developer_churmn

Figure (7):Heat map of Spearman Correlation Coefficients

In Figure 8, the scatter plot between CBO and bug count reveals a rising trend,
connected classes are more defect-prone.

confirming that strongly

20 A

15 4

[
(=]
L

Bug Count

Scatter Plot of CBO vs Bug Count with Regression Line

0 2 4 6

Coupling Between Objects (CBO)

10

Figure(8) :Scatter Plot - CBO vs Bug Count

96

Alkadhim Journal for Computer Science, Vol. 3, No. 4 (2025)
The pair plot (Figure 9) shows diagonal distributions and paired scatter plots off-diagonal for LOC, CBO, WMC,
LCOM, DIT, Cyclomatic Complexity, and maintainability indices.

Pairplot of Selected Software Metrics and Maintainability Indicators

100 /—\ A A
& NPAaV 7
s -

/
v
| VAV
/_

/ / \
/ - /
n P N R
i e et

Figure (9):Pair plot of Software Metrics and Maintainability Indicators

wMC
\

fle_changes bug count
s ¥ B]
a . L]
b, .
8 . .
5 ¢
iy H |
h
‘\ .

The box plot (Figure 10) shows that CBO values grow throughout low, medium, and high bug counts,
supporting the relationship between strong coupling and defect rates.

CBO Distribution across Bug Count Levels

10 A

Coupling Between Objects (CBO)

T T
Low Medium High
Bug Count Level

Figure (10):Box Plot of CBO Distribution Across Bug Count Levels

97

Alkadhim Journal for Computer Science, Vol. 3, No. 4 (2025)
In Figure 11, histograms with kernel density curves show the dispersion and variability of important metrics and
bug counts throughout the studied Java.

Distribution of LOC Dastribution of CBO

; = & Brs = [—| s
~— .]
] 5o
o D -

o

Distribution of WMC Distribution af LCOM

1ad [—
1 [=— _
——1 | —
— o I
| ool !
o 2% 20 25 a ez [a4) ar o
i

4.0

as

2.0

= =.5 o

z.o -

Requen;

1.m

- I ..

oo

Figure (11): Distribution Plots of Key Software Metrics and Bug Count

4.1 Discussion

Results confirm past studies and provide new evidence from real-world software initiatives. Early coupling
analysis during system design is crucial since CBO was the largest indicator of poor maintainability. Among the
first metrics, LOC and LCOM still help identify maintenance-intensive modules. High structural complexity
may raise maintenance and discourage developer participation, since cyclomatic complexity is linked to
developer turnover. DIT's inadequate prediction ability supports past research that questioned its maintainability
assessment efficacy.

4.2 Implications for Practice

Dashboards for real-time CBO, LCOM, and WMC monitoring, alarms for dangerous metrics during reviews,
and refactoring to target classes with high LOC, CBO, and LCOM.
4.3 Threats to Validity

Tool inaccuracies may influence internal validity, although CK Tool and Java Parser reduced such dangers. Due
to Java-based open-source systems, conclusions may not apply to other systems. Bug count, file modifications,
and developer churn may not represent all maintainability factors, limiting construct validity. Finally, correlation
does not indicate causality and implies monotonic variable connections, limiting statistical validity.

5. Conclusion

Object-oriented software metrics are dependable maintainability indicators, as shown by this research. CBO,
LCOM, and Cyclomatic Complexity consistently lower code quality and increase maintenance effort. To
mitigate these risks, development teams can use metric dashboards and automated tools for code health
monitoring and smarter refactoring choices. Real-time metric monitoring, historical trend analysis, and dynamic,
runtime-based metrics should be investigated in future study to better understand system maintainability. With
the goal to offer more comprehensive insight into systems upkeep and to assist with improved upkeep and
restructuring actions, subsequent research needs to focus on immediate software measures tracking, longitudinal
analysis of measurement patterns, and the application of dynamic, runtime-specific statistics.

Acknowledgments: The authors would like to thank Mustansiriyah University (https://uomustansiriyah.edu.iq).

98

Alkadhim Journal for Computer Science, Vol. 3, No. 4 (2025)
Conflict of Interest: No conflict of interest.

References

[1] A. E. Hassan and Z. Xing, “Software quality metrics: A survey and analysis,” IEEE Transactions on
Software Engineering, vol. 46, no. 9, pp. 930-945, 2020.

[2] S. Ali, E. Shihab, and A. E. Hassan, “A comprehensive study on software maintainability prediction,”
Journal of Systems and Software, vol. 157, p. 110388, 2019.

[3] M. Alsaga’aby, A. Ouni, and H. Sahraoui, “Assessing the effectiveness ot object-oriented metrics for defect
prediction: A systematic literature review,” Information and Software Technology, vol. 129, p. 106424, 2021.

[4] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object-oriented design,” IEEE Transactions on
Software Engineering, vol. 20, no. 6, pp. 476—493, 1994.

[5] H. D. Nguyen and T. T. Nguyen, “Revisiting CK metrics for modern Java applications: Empirical validation
and extension,” Empirical Software Engineering, vol. 27, no. 3, p. 42, 2022.

[6] C. Catal and B. Diri, “A systematic review of software fault prediction studies,” Expert Systems with
Applications, vol. 37, no. 4, pp. 1105-1116, 2019.

[7] Y. Zhang et al., “Challenges in adopting software quality metrics in industrial practice: A survey study,”
IEEE Software, vol. 38, no. 2, pp. 55-62, 2021.

[8] H. Borges et al., “Mining open-source software repositories for empirical studies: Challenges and solutions,”
Journal of Systems and Software, vol. 163, p. 110555, 2020.

[9] S. Kim and T. Zimmermann, “An empirical study of code churn and fault prediction in open-source
projects,” Information and Software Technology, vol. 111, pp. 39-54, 2019.

[10] L. Jiang et al., “Machine learning-based software maintainability prediction: A systematic literature review
and framework,” IEEE Transactions on Software Engineering, vol. 49, no. 1, pp. 150-175, 2023.

[11] S. Lee, J. Choi, and H. Park, “Automated framework for assessing software maintainability using combined
static analysis and issue tracking data,” IEEE Transactions on Software Engineering, vol. 49, no. 4, pp. 1560—
1574, 2023. doi: 10.1109/TSE.2022.3154210.

[12] K. Park and D. Kim, “Temporal analysis of software metrics evolution in agile Java projects,” Journal of
Systems and Software, vol. 189, p. 111352, 2022. doi: 10.1016/j.jss.2022.111352.

[13] Y. Zhang, J. Li, and F. Wang, “Hybrid machine learning approach for maintainability prediction combining
code metrics and developer activity,” Empirical Software Engineering, vol. 29, no. 1, p. 21, 2024. doi:
10.1007/s10664-023-10324-7.

[14] Fawareh, H. J., Al-Shdaifat, H. M., & Samara, G. (2025). Comparing Open Source with Software Code

Generated by Al Tools from Software Maintainability Quality Factor Perspective. WSEAS Transactions on
Computer Research, 13, 653-659.

[15] Y. Huang and X. Chen, “Explainable machine learning for software quality prediction: Challenges and
opportunities,” ACM Computing Surveys, vol. 55, no. 2, p. 34, 2023. doi: 10.1145/3551234.

[16] T. Gorschek, S. Fricker, and C. Wohlin, Requirements Engineering: Fundamentals, Principles, and
Techniques. Springer, 2023.

[17] B. Kitchenham, D. Budgen, and O. Brereton, Evidence-Based Software Engineering and Systematic
Reviews. CRC Press, 2022.

99

	Article information
	ii.Apache Commons Lang : A utility library used in ma
	iii.Google Gson : A robust package converts Java objec
	Class
	Purpose
	Key Attributes
	Software Class
	Stores software metrics for a code unit.
	name, LOC, CBO, LCOM, WMC, DIT, Cyclomatic Complex
	Maintainability Indicators
	Tracks change frequency, bugs, developer churn.
	File Changes, bug Count, developer Churn
	Repository
	Represents the project repository.
	Repo Name, url, stars, last Updated
	Commit
	Details a single code change.
	Commit ID, date, message
	Developer
	Represents a project contributor.
	devName, commits, active Months
	Figure (6): Component Diagram of the System Archit
	Metric
	Bug Count
	File Changes
	Developer Churn
	Coupling Between Objects (CBO)
	0.82 **
	0.75 **
	0.68 **
	Lines of Code (LOC)
	0.65 **
	0.72 **
	0.60 **
	Weighted Methods per Class (WMC)
	0.70 **
	0.66 **
	0.62 **
	Lack of Cohesion of Methods (LCOM)
	0.55 **
	0.48 *
	0.44 *
	Depth of Inheritance Tree (DIT)
	0.30
	0.25
	0.20
	Cyclomatic Complexity
	0.77 **
	0.70 **
	0.65 **
	*(p < 0.05 = , p < 0.01 = ** → significant)

