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Abstract

Accurately predicting of diabetes using clinical and
demographic indicators is crucial, as early detection of
this chronic metabolic disorder helps prevent serious
long-term organ complications. Existing research
continues to face significant challenges, including class
imbalance, the scarcity of large and diverse datasets, and
limited integration of explainable artificial intelligence.
This research compares several ensemble learning
methods including extremely randomized Trees, on a
large imbalanced dataset (87,664 negative vs. 8,482
positive samples). To mitigate imbalance, we evaluate
six resampling approaches including Random Over
Sampling. We assess models using metrics robust to
class imbalance (precision, recall, F1, AUC-ROC, and
AUC-PR) and calibration measures. The Extra Trees
classifier achieved the highest measured accuracy (0.994);
with Random Over Sampling for balancing dataset. also,
these results were compared with several previous works
and number of machine learning algorithms, and the
results showed superiority. Explain ability is performed
at both global and local levels: permutation and SHAP
for global feature importance, and (Local Interpretable
Model-Agnostic Explanations) force plots for instance-
level reasoning. however, we analyzed this result using
sensitivity, specificity, PR-AUC and calibration, we
report detailed experiments showing how resampling
method, hyper parameter tuning, and stratified validation
influence performance. Finally, we provide clinical-
relevant insights from SHAP analyses and discuss
limitations and future directions for deploying
interpretable models in screening workflows.
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1. Introduction
Diabetes is a long-term metabolic disease characterized by the pancreas not producing enough insulin (in type 1
diabetes, T1D) or the body's cells not responding correctly to insulin (in type 2 diabetes, T2D) [1]. Insulin is
critical in the regulation of blood sugar, and the phase of metabolic homeostasis. When this regulating process
breaks down and blood sugar stays high over time, a state known as hyperglycemia can cause permanent damage
to the nerves or blood vessels of various organs. Diabetes has been recognized as one of the top killer diseases
according to WHO [1]. likewise, 422 million people, primarily in low- and middle-income countries, live with
the complaint. As a result, diabetes is responsible for approximately 1.5 million deaths per year worldwide [1].
According to the predictions made by WHO, the figure may reach approximately 642 million by 2040, which
means one in a ten may suffer from diabetes as a result of bad lifestyle choices and insufficient exercise [2].
Worldwide, diabetes mellitus is a major threat to public health, and early discovery is crucial for effective care
and issue prevention [3]. While there is no definitive cure, early and accurate prediction of diabetes can
significantly improve patient outcomes and reduce healthcare burdens. However, predicting diabetes is
challenging due to the limited availability of complex and nonlinear datasets, which often contain outliers,
missing values, and unbalances [4]. Machine learning (ML) approaches have extensively used to improve early
discovery and treatment [5], where early detection of diabetes, a worldwide health problem, is essential for
minimizing serious complications that can occur as a result. Now, intelligent diabetic diagnostic tools with the
utilization of machine learning (ML) algorithms have not only sprung up but also are given due attention in
recent times. However, establishing complete correctitude in these systems is a major obstacle. Developments in
ensemble ML methods indicate that it can be a promising measure to detect diabetes earlier, which will bring fast
and cost-effective diagnostic modalities as compared to conventional techniques [6]. The chronic nature of
diabetes demands provident strategies for early determination and intervention, indeed, in the face of
improvements in operation and treatment. Prophetic modelling shows promise in fulfilling this demand, primarily
through the use of ensemble learning approaches [7]. Although diabetes may be effectively prognosticated using
typical prophetic modeling methods, ensemble learning presents a special opportunity to ameliorate model
performance and safety. Ensemble approaches can capture intricate liaison and patterns in the data by combining
prognostications from various base models, resulting in more accurate prognostications [7]. Ensemble modeling
is the process of creating two or more predictive models and combining them to predict the end result. The
predictions of the individual models are assembled to obtain a final prediction, which typically performs better on
the test set. The objective of ensemble tree algorithms is to reduce generalization error in prediction [8]. The
former is often better than isolating individual models, with two main considerations: The first is the good
generalization ability and reliable predictions of ensemble models in comparison with single models. Second, in
order to improve the robustness of the model and reduce variability, predictions are rendered stable and smooth
over various datasets. Ensemble learning is particularly effective for data diagnosis as it addresses several
limitations inherent in individual models. By combining multiple models, ensemble learning reduces prediction
errors, enhances robustness against data variations, and improves generalization capabilities. It also compensates
for the weaknesses of single models and increases trust in the diagnostic process. Among its key advantages are
improved prediction accuracy, reduced variance, greater resistance to overfitting, and enhanced robustness.
Additionally, ensemble methods offer flexibility in model selection, better handling of unbalanced datasets, and
increased confidence in predictions [9]. This research aims to investigate the predictive power of ensemble
learning for diabetes. A large data set will be used that contains information on clinical, demographic and
lifestyle aspects will be used. Our objective is to develop and evaluate ensemble learning models capable of
accurately estimating the risk of diabetes and identifying significant risk factors associated with the illness. Also,
contribute to the growing body of knowledge on diabetes prediction and apply ensemble learning techniques in
healthcare analytics. through the development of robust prediction models to support personalized care regimens,
early identification, and, eventually, improved health outcomes for people with diabetes. This paper is an early
exploration of Al in the prediction of diabetes, as well as highlighting deficiencies in existing work and directions
for further research. Finally, we will abstract the key findings with regard to the objective and significance from
the academic community at large. This work contributes to the following brief points:
¢ Develop an improved performance ensemble learning model for diabetes prediction.
e Determine the best technique to address unbalance diabetes dataset.
e Use of explainable artificial intelligence XAI to increase trustworthiness and confidence in diabetes

prediction.
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The remainder of this paper is organized as follows. Section 2 provides an overview of the related work and
highlights existing methods relevant to this research. Section 3 presents the proposed model, including a
description of the dataset, preprocessing techniques, the ML models applied, and the evaluation methodology.
Section 4 discusses the experimental results and provides a detailed analysis of the findings. Section 5 provide
discussion with Explainable Al , Section 6 summarize limitations and future work, Finally, Section 7 concludes
the paper by summarizing the key contributions .
2. Related work

Previous work employed classical ML classifiers on structured datasets—sometimes small and homogeneous
ones—leading to models suffering from overfitting with low transferability, as illustrated in Maulidiyyah et al.
[10], Gupta et al. [12], and Mazhar et al. [22]. Deep learning (DL) models, including deep neural networks
(DNNSs), convolutional neural networks (CNNs), and autoencoders, have further improved predictive accuracy,
especially in medical imaging applications, as demonstrated in Gupta et al. [12] and Olatunji [13]. but few
tested the models on external or clinically validated datasets. Hybrid and ensemble methods that integrate
multiple algorithms—such as CNN-LSTM, fuzzy-based systems, and ensemble frameworks using XGBoost,
LightGBM, and random forests—have shown strong results in addressing class unbalance and enhancing
robustness as in Ayat et al. [8], Ahmed et al. [14], Abousaber et al. [15]and Sampath et al. [16], but there have
been few comparisons with the state-of-the- art DL architectures. Moreover, explainable Al techniques like
SHAP, LIME, and LASSO have been incorporated to improve model interpretability as in Kaliappan et al. [17], J.
Kaliappan et al. [18] and Arslan et al. [19], however, the clinical interpretability of these explanations is largely
unmeasured. while emerging modalities such as ECG and voice-based prediction are broadening the application
of Al in diabetes detection Jaycee M. Kaufman et al. [20] and [21]. Despite these promising developments, but
they are based on small pilot datasets or unimodal input ones, without complete multimodality fusion pipelines.
The existing literature is marked by several limitations (summarized in table 1.) that affect the rigor and
generalizability of findings. Many studies, such as those by Maulidiyyah et al. [10] and Mazhar et al. [22], rely on
small or restricted datasets, limiting statistical power and real-world applicability. External validation is
frequently lacking—particularly in image-based studies like those of Olatunji et al. [13] and Ayat et al. [11]—
which often evaluate models using synthetic or public datasets without clinical corroboration. Several works also
exhibit narrow methodological scope, such as Sahid et al. [11], who used only traditional ML methods without
exploring DL potential. Optimized or hybrid models, including those proposed by Ahmed et al. [14] and
Abousaber et al. [15], were not benchmarked against state-of-the-art DL frameworks, raising concerns about
performance estimation. Models trained on small, homogeneous datasets, such as Gupta et al. [12] using the
PIMA Indian dataset, further risk overfitting and lack external validity. Furthermore, a substantial number of
studies—e.g., Krishnan and Sheshasaayee [23]—lack interpretability components, reducing clinical usability.
The absence of cross-dataset validation, as seen in works by Pratya et al. [24] and Talari et al. [25], undermines
generalization across populations. Similarly, image-based studies such as Meshram et al. [26], lack comparative
evaluation with clinical gold standards, and rule-based systems like Sajjadi et al. [27], though extensive in
coverage, fall short in predictive strength and integration with modern Al techniques. These gaps underscore the
necessity for future research to utilize diverse datasets, robust evaluation protocols, and interpretable frameworks
that align with clinical practices and benchmark against contemporary Al models. Despite the growing body of
literature applying machine learning and deep learning techniques to medical prediction tasks, several key
knowledge gaps remain that limit the robustness, applicability, and clinical relevance of existing approaches.
These gaps include:

Most of the data sets being worked on are unbalanced, which poses a challenge.

Many studies rely on small-scale or homogeneous datasets (e.g., PIMA Indian, LMCH), which reduces the

statistical power and generalizability of the results to broader populations.

A significant number of studies—especially image-based approaches—use only internal or synthetic datasets
without clinical testing or validation in real-world healthcare environments.

Several studies focus exclusively on traditional ML techniques or structured data, overlooking the potential of

deep learning models and multimodal data integration.

Optimized or hybrid methods are often not compared to leading DL frameworks, limiting the ability to assess

their relative performance.

Advanced models, particularly deep learning networks, are sometimes trained on limited datasets without

appropriate regularization or cross-validation, increasing the risk of overfitting.

Many ML/DL systems do not incorporate explainable Al techniques (e.g., SHAP, LIME), making them less

transparent and harder to adopt in clinical practice.

Studies often validate their models on a single dataset or population, failing to account for variability in clinical,

demographic, or geographic factors.

Some works, particularly vision-based models, are not adequately compared to established clinical diagnostic

criteria or physician assessments.

While rule-based systems use large datasets, they often neglect
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e Few studies explicitly handle real-world data quality issues, such as missing values, noise, or inconsistent entries
that are common in healthcare records.
In this research, have been addressed three gaps from previous works, where process the unbalanced, and using
large dataset rather than on small-scale, finally incorporate explainable Al techniques.

Table (1): Comparison of limitations in related works.
Reference No. Limitations Details
. Small,
[10],[22] Over fitting &.low homogeneous
transferability
datasets
. - Use of PIMA Indian
[12] Risk of over fitting dataset
Limited external Few test.e(.i models
[12],[13] validation on clinically
validated datasets
Few comparisons .
. Hybrid methods
[8],[14],[15],[16] with state-of-the- not benchmarked
art DL
Low measured Explainable Al
[17],[18],[19] clinical explanations not
interpretability clinically validated
Based on small Emerging
[20],[21] pilot/unimodal modalities lack
datasets multimodal fusion
Evaluated on
[11],[13] Lack O.f exFernal synthetic or public
validation
datasets
Narrow .
. Only traditional
[11] methodological ML used
scope
[23] Lack of No interpretability
interpretability components
Lack of
[24],[25] No cross-dataset generalization
validation .
across populations
Lack of
[26] comparative Image-based study
evaluation with limitations
clinical standards
Rule-based
[27] Weak predictive systems without
strength modern Al
integration

3. Proposed Framework

This section provides a comprehensive overview of the research procedures undertaken and the ensemble
learning methods utilized during the experiments. Figure 1 illustrates the proposed framework, where involves
several steps. First step the dataset undergoes preprocessing, where missing data are imputed, followed by
Removing duplicate cases and formatting adjustments and Handling data set unbalance and splitting the dataset
into a training set and a test set. Second step, model building, the training data was used to train the ensemble
learning models (Bagging (Decision Tree), Random Forest, AdaBoost, Gradient Boosting, Histogram-based
Gradient Boosting, extremely randomized trees (Ensemble), Voting Classifier (LR + RF + SVM). Third step. In
the fourth step, the test phase, where model’s performance is evaluated using appropriate metrics and plotting.
Finally save the best model, and using XAl to interpret model behavior as a general and local explanations.
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Figure (1): The flow of the proposed framework.
3.1.Dataset Overview

This dataset collects health and personal data of patients and diabetes information. Among other things, it
includes age, sex, measurements of the body and blood pressure, information on heart health, smoking habits, and
results from blood tests. Released for public use [28], such data aid in the construction of a tool that calculates the
risk of diabetes at an individual level. This can help physicians to find out which patients might be at risk and to
tailor individual treatment plans. Researchers also use this information to examine how various health and
lifestyle factors are associated with developing diabetes. Shape of this dataset (100000 rows x 9 columns). The
data set contains the features in Table 2.

Table (2): The Data Set Features.

Feature Range
Gender Male or Female
Age 0.8-80
Hypertension 0,1
Heart-disease 0,1
Smoking-history Never, current, No. Info, etc.
Bmi 10-95.7
HbAlc-level 3.5-9
Blood-glucose level 80 - 300
Diabetes Target variable, 1: has diabetes, 0: no diabetes.

3.2.Dataset Preprocessing

The data set consists of 100,000 examples with 9 columns and the preprocessing included the following steps:

e Step one: Checking Missing Value, where no missing values were found in the dataset, after conducting
a complete scan to all feature’s values.

e Step two: Checking Duplicated Examples, where found 3908 duplicated examples in the dataset was
removed, excluding the first occurrence.

e Step three: Convert Categorical Features to Numerical, where found tow categorical features) gender,
Smoking history) were, categorical to numerical distributions shown in the Table 3.

o Step four: Checking Balancing, the data set is unbalanced, where original data set shape: contains 87664
of class 0 (No Diabetes) and 8482 of class 1(Diabetes) after removing duplicated cases, this challenge
was solved by applying six data balance techniques, as shown in Table 4. The training will be done on
the balanced data resulting from each of the techniques in Table 3, and then the results of training will be
compared to select the best technique for treating the unbalance in diabetes dataset.

Table (3): Encode Categorical Features.
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Features Numeric value Categorical Value
Gender 0 Male
1 Female
2 Other
Smoking history 0 No Info
1 Current
2 Ever
3 Never
4 Former
5 Not current
Table (4): Results of Apply Six Data-Balancing Techniques.
Techniques Class 0 Class 1
Random Over Sampling 61397 61397
Random Under Sampling 5905 5905
SMOTE (Synthetic Minority Over-sampling Technique) 61397 61397
ADASYN (Adaptive Synthetic Sampling) 61397 61532
TomekLinks (Tomek Links Removal) 60459 5905
SMOTEENN (SMOTE + Edited Nearest Neighbours) 53408 59075

3.3. Training phase

In this section, once preprocessing is complete, the data is passed to the training process. The data were divided
into 70% for training and 30% for testing, and ensemble learning (Bagging (Decision Tree), Random Forest,
AdaBoost, Gradient Boosting, Histogram-based Gradient Boosting, extremely randomized Trees (Ensemble),
Voting Classifier (LR + RF + SVM) and XGBoost) were applied. The Extremely randomized trees (extra tree)
fall under Parallel Homogeneous Ensembles [29], where several powerful models are built using the same
underlying machine learning technique. Diversity among these models is created by incorporating randomness,
such as selecting different data subsets or varying input features during training. In this work, Algorithm 1
corresponds to the Extremely Randomized Trees approach, with its parameter details outlined in Table 5. this
algorithm formally introduced by [30] as an additional layer of randomness in both feature and split selection for
decision tree ensembles.

Algorithm 1. Extremely Randomized Trees Procedure.

Input:

Training data ={( , )}

number of trees ;

number of random features per split ;
minimum samples per leaf ;.

For eachtree = to
Use the entire training dataset.
At each node:

(a) Randomly select features.

(b) For each selected feature, generate a random split point within
the feature range.

(c) Compute the information gain for classification (equation (3)
based on equation (1) and (equation (2)).

(d) Choose the split that yields the best score.

(e) Repeat recursively until the minimum sample size ;,is
reached or no further split is possible.

Combine all M trees:

For classification: take the majority vote across all trees (equation

(4)).

The algorithm aims to minimize an impurity measure at each node split. Common impurity measures include:
e  Gini Impurity (for classification):

G=1—Z(11)2 0
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e [Entropy:

H ==Y Plog,(P)

2

For each node, K random features are selected, and random split thresholds are generated for each. The best split
is chosen based on maximum information gain, computed as:

Al = I(parent) - {%I (left)+ %I (right )}

3
e Final predictions:
y=mode(]](x),Tz(x),~--TM(x)) 4)
Table 5 shows the values of the parameters passed to the algorithm with execution. which are the same as
the values of the parameters passed to all other algorithms.
Table (5): Extremely Randomized Trees Parameters Values.
Parameter Description The value
. Number of trees in the ensemble. More trees reduce
n_estimators . . . 100
- variance but increase computation.
Maximum depth of each tree. Controls model None (default — nodes expanded until all leaves
max_depth . . . . .
complexity and risk of overfitting. are pure or min_samples_split reached)

Minimum number of samples required to split a

min_samples_split node. Larger values prevent deep splits.

2 (default)

Minimum number of samples required at a leaf

min samples leaf
Samples_ node. Ensures leaves are not too small.

2 (default)

Number of features randomly selected at each split.

max_features . .
- Controls randomness and diversity of trees.

"sqrt" (default for classification in Extra Trees)

bootstra Whether bootstrap sampling is used to build each False (default — Extra Trees uses the whole
P tree. If False, the full dataset is used. dataset, not bootstrapping)
Seed for random number generator to ensure
random_state L 42
- reproducibility.
criterion Function used to mea'sure splft quality, e.g., 'gini' or "gini" (default)
entropy'.
. Number of parallel jobs used to train trees. -1 uses
n_jobs -1

all available cores.

Also, ensemble models like AdaBoost, Gradient boosting, histogram-based gradient boosting, XGBoost and
Voting are trained on the same dataset. Additionally, A variety of have been used that have proven effective in
classifying tabular medical data such as (Logistic Regression, Ridge Classifier, Passive-Aggressive, Stochastic
Gradient Descent, Single-Layer Perceptron, K-Nearest Neighbors (KNN), Nearest Centroid, Support Vector
Machine with Linear Kernel, Support Vector Machine with RBF Kernel, Linear Support Vector Classification,
Gaussian Naive Bayes, Bernoulli Naive Bayes, Quadratic Discriminant Analysis and Linear Discriminant
Analysis). Such diversity facilitates thorough benchmarking across various algorithmic families. All algorithms
are trained on the same dataset as the ensemble models, and subsequently their performances are evaluated, then
compare results with ensemble algorithms used.

3.4. Testing phase

Assessing how well a model works is by using appropriate evaluation criteria supporting the particular
problem. The selection of these criteria depends on the properties of the dataset as well as on the kind of
analysis being conducted. The fundamental evaluation metrics are presented in Table 6 for models evaluated
and investigated in this research. The above measures are based on four principal ideas:
e True Positive (TP): When the model correctly predicts which patients have heart disease.
e True Negative (TN): Cases where the model correctly identifies patients without having heart disease.
o False Positive (FP): When the model wrongly predicts that a patient has heart disease when, in fact, they
don’t.
o False Negative (FN): It refers to the cases in which the model does not detect heart disease in patients who
actually have it.
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Table (6): Summarizes the Performance Metrics.

Metric Equation
Accuracy Accuracy = (TP + TN) / (TP + TN + FP + FN)
Precision Precision = TP / (TP + FP)
Recall (Sensitivity) Recall = TP / (TP + FN)
F1 Score F1 =2 * (precision * Recall) / (Precision + Recall)
ROC-AUC N/A (Area under the ROC curve)

4. Results and discussion

This section presents performance metrics—including precision, accuracy, recall, F-score, ROC-AUC, and
others—for several ensemble models evaluated on both unbalanced and balanced datasets. after that comparing
the ensemble models with some machine learning models and the empirical research that has utilized deferent
machine learning models for the prediction of diabetes disease.

4.1.Results with original dataset (unbalanced)

The performance of the designed ensemble models with the original dataset shown in learning curve with Figure
2, and Table 7. The comparison was based on precision, recall, F-score, accuracy, ROC-AUC metrics for the
same size of training and testing sets for all ensemble models.

Learning Curves (Selected Models)

#- Random Forest
—e~ AdaBoost
—e— Gradient Boosting
@~ HistGradient Boosting
Extra Trees (Ensemble}
—8— Voting Classifier (LR + RF + SVM)

1.0 4

0.8 4

0.6 q

Accuracy

0.4

0.2 4

0.0

5000 10000 15000 20000 25000 30000 35000 40000 45000
Training Set Size

Figure (2): Learning curves with original unbalanced dataset, dashed line (validation) and solid line (training).

As we can see in Figure 1, Extremely Randomized Trees (Extra Tree) outperforms all other ensemble learning
algorithms in training and validation testing.

Table (7): Results Ensemble Models with the Original Dataset (Test Set).

Model Accuracy Precision Recall F1 Score ROC AUC
Bagging (Decision Tree) 0.968 0.926 0.702 0.798 0.966
Random Forest 0.969 0.951 0.693 0.802 0.965
AdaBoost 0.971 0.989 0.688 0.812 0.976
Gradient Boosting 0.971 0.987 0.69 0.812 0.98
HistGradient Boosting 0.972 0.983 0.693 0.813 0.979
Extra Trees (Ensemble) 0.967 0.906 0.698 0.789 0.958
Voting Classifier (LR + RF + SVM) 0.969 0.962 0.682 0.798 0.972
XG Boost 0.971 0.961 0.701 0.811 0.978

The weakness of the above results is that the dataset is unbalanced and, therefore, the highest accuracy is for the
highest class in the dataset. According to the accuracy scores, as shown in Table 7. HistGradient Boosting
performed (0.972%). This accuracy is higher than the accuracy of all other models. The reason why the accuracy
is unreliable is because the data is unbalanced. When examining the confusion matrices, we find that the error
rate is very large for the class 1 as in Table 8. We note in Table 7 that the error rate in class 1 is more than 30 %,
it is a big error rate. Therefore, we will work to rebalance the data and then training and testing the models to
obtain a more reliable accuracy.
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Table (8): Confusion Matrix of HistGradient Boosting.

Actual \ Predicted Predicted 0 (non-diabetic) Predicted 1(diabetic)
Actual 0 (non-diabetic) 26,236 (True Negative) 31 (False Positive)
99.88% 0.12%
Actual 1 (diabetic) 791 (False Negative) 1,786 (True Positive)
30.69% 69.31%

4.2.Results with Balanced Dataset

We rebalanced the data set using six methods as shown in Table 9. Here will display the results of training on all
methods of data rebalancing, which are learning curves of Figures 3-8., and then we will analyze the training
results. Figure 3 shows the results of training the ensemble learning models on balanced data using the Random
Over Sampler technique, where the Extra Trees model outperformed the others, and similar results were observed
in Figure 4 using Random Under Sampling. This consistent superiority was further confirmed in Figure 5
(SMOTE resampled), Figure 6 (ADASYN resampled), Figure 7 (Tomek Links resampled), and Figure 8
(SMOTEENN resampled). Extra Trees consistently outperformed the other ensemble models due to several
factors: it uses fully random thresholds when splitting nodes, which reduces overfitting, creates more diverse
trees, and improves generalization on unseen data; it trains faster by randomly selecting both split features and
thresholds without searching for the best split, making it especially efficient for high-dimensional data; and its
extreme randomness results in highly decorrelated trees, which reduces variance and leads to more stable
predictions. Overall, the combination of enhanced generalization, reduced variance, and faster training made
Extra Trees consistently superior across all resampling methods.

Learning Curves {Selected Models)
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Figure (3): Ensemble training with Random Over Sampler resampled.
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Figure (4): Ensemble training with_ Random Over Sampler resampled.

117




Alkadhim Journal for Computer Science, Vol. 3, No. 4 (2025)

Learning Curves (Selected Models)
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Figure (5): Ensemble training with_ SMOTE _resampled.
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Figure (6): Ensemble training with_ ADASYN _resampled.
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Figure (7): Ensemble training with_ Tomek Links_ resampled.

118



Alkadhim Journal for Computer Science, Vol. 3, No. 4 (2025)

Learning Curves (Selected Models)

o
>

Accuracy

o
=

0.2

0.0

~®- Random Forest
—e~ AdaBoost

&

— —&- Gradient Boosting
@~ HistGradient Boosting
Extra Trees (Ensemble)
~&- Voting Classifier (LR + RF + SVM)

10000

20600 30600 40600
Training Set Size

50000

Figure (8): Ensemble training with  SMOTEENN_ resampled.

Table (9): Results of Testing Ensemble Models with All Balanced Datasets.

Resemble techniques Model Accuracy | Precision | Recall | F1 ROC
Score | AUC
Random Over Sampling Bagging (Decision Tree) 0.989 0.978 1 0.989 1
Random Forest 0.99 0.98 1 0.99 1
AdaBoost 0.9 0.892 091 | 0.901 | 0.974
Gradient Boosting 0.915 0.902 0.93 | 0916 | 0.98
Hits Gradient Boosting 0.931 0.913 0.951 | 0.932 | 0.986
Extra Trees (Ensemble) 0.994 0.989 1 0.994 1
Voting Classifier (LR + 0.94 0.926 0.956 | 0.941 | 0.991
RF + SVM)
XG Boost 0.947 0.926 0.97 | 0948 | 0.99
Random Under Sampling Bagging (Decision Tree) 0.896 0.883 0.909 | 0.896 | 0.969
Random Forest 0.898 0.886 0.91 | 0.898 | 0.968
AdaBoost 0.9 0.897 0.902 0.9 0.971
Gradient Boosting 0.908 0.895 0.923 | 0.909 | 0.975
Hits Gradient Boosting 0.902 0.887 0.919 | 0.903 | 0.973
Extra Trees (Ensemble) 0.897 0.886 0.909 | 0.897 | 0.963
Voting Classifier (LR + 0.895 0.883 0.908 | 0.895 | 0.967
RF + SVM)
XG Boost 0.895 0.881 0.91 | 0.895 | 0.971
SMOTE (Synthetic Minority Over- Bagging (Decision Tree) 0.98 0.988 0.971 | 0.979 | 0.997
sampling Technique) Random Forest 0.972 0.974 0.97 | 0.972 | 0.997
AdaBoost 0.928 0.924 0.932 | 0.928 | 0.986
Gradient Boosting 0.965 0.981 0.947 | 0.964 | 0.995
Hits Gradient Boosting 0.97 0.988 0.952 | 0.969 | 0.997
Extra Trees (Ensemble) 0.967 0.962 0.972 | 0.967 | 0.996
Voting Classifier (LR + 0.932 0.923 0.941 | 0.932 | 0.988
RF + SVM)
XG Boost 0.974 0.988 0.96 | 0.973 | 0.997
ADASYN (Adaptive Synthetic Bagging (Decision Tree) 0.979 0.986 0.972 | 0.979 | 0.997
Sampling) Random Forest 0.971 0.963 0.978 | 0.971 | 0.997
AdaBoost 0.903 0.885 0.927 | 0.905 | 0.975
Gradient Boosting 0.954 0.964 0.943 | 0.953 | 0.993
Hits Gradient Boosting 0.961 0.976 0.946 | 0.961 | 0.995
Extra Trees (Ensemble) 0.966 0.953 0.98 | 0.966 | 0.996
Voting Classifier (LR + 0.917 0.888 0.955 | 0.92 | 0.984
RF + SVM)
XG Boost 0.966 0.977 0.954 | 0.966 | 0.996
TomekLinks (Tomek Links Removal) Bagging (Decision Tree) 0.968 0.918 0.704 | 0.797 | 0.968
Random Forest 0.968 0.941 0.688 | 0.795 | 0.963
AdaBoost 0.97 0.972 0.676 | 0.798 | 0.974
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Gradient Boosting 0.97 0.97 0.685 | 0.803 | 0.978
Hits Gradient Boosting 0.97 0.953 0.694 | 0.804 | 0.978
Extra Trees (Ensemble) 0.967 0.915 0.693 | 0.788 | 0.96
Voting Classifier (LR + 0.967 0.938 0.669 | 0.781 | 0.969
RF + SVM)
XG Boost 0.969 0.921 0.708 | 0.801 | 0.976
SMOTEENN (SMOTE + Edited Nearest | Bagging (Decision Tree) 0.984 0.987 0.983 | 0.985 | 0.999
Neighbours) Random Forest 0.983 0.981 0.986 | 0.984 | 0.999
AdaBoost 0.948 0.942 0.96 | 0.951 | 0.992
Gradient Boosting 0.973 0.975 0.973 | 0.974 | 0.997
Hits Gradient Boosting 0.98 0.983 0.978 | 0.981 | 0.998
Extra Trees (Ensemble) 0.984 0.98 0.99 | 0.985 | 0.999
Voting Classifier (LR + 0.956 0.951 0.965 | 0.958 | 0.994
RF + SVM)
XG Boost 0.981 0.985 0.979 | 0.982 | 0.999

According to the metrics in Table 8. Random Over Sampling with Extra Trees (Ensemble) give the higher than
the metrics of all other models. These results after rebalancing the dataset became more realistic and reliable, as
when examining the confusion matrices, we find realistic numbers for the error rates for both classes. We note
that the confusion matrix of Extra Trees (Ensemble) with the resembled technique Random over Sampling as in

Table 10.

Table (10): Extra Trees (Ensemble)- Confusion Metrics with Random Over Sampling.

Actual \ Predicted Predicted 0 (non-diabetic) Predicted 1(diabetic)
Actual 0 (non-diabetic) 18340 (True Negative) 203 (False Positive)
98.91% 1.09%
Actual 1 (diabetic) 0 (False Negative) 18296 (True Positive)
0.0% 100.00%

Note Zero error rate for class 1 (diabetic) and very small number (203) for class 0 (non-diabetic). This result is
more reliable than the classification results on the data in its original, unbalanced state. The proposed model is
best suited for risk scoring and early screening of diabetes, serving to identify individuals at high risk who may
benefit from closer monitoring or preventive interventions. It is not intended as a standalone diagnostic tool, and
clinical judgment alongside standard diagnostic tests remains essential.

4.3. Benchmarking Against other Models and Previous Studies

We note that the highest accuracy in previous studies is 99.07% in [25] while this work achieved an accuracy rate
of (0.994%) with high generalization achieved through extra tree ensemble, also comparison with 14 machine
learning model achieved on Random Over Sampling, balanced dataset as shown in Table 11.

Table (11): Machine Learning Models with Balanced Dataset by Random Over Sampling.

Model Accuracy Precision Recall F1 Score
Logistic Regression 0.959 0.867 0.634 0.732
Ridge Classifier 0.938 0.99 0.311 0.473
Passive Aggressive 0.921 0.564 0.523 0.543
SGD Classifier 0.954 0.802 0.644 0.714
Perceptron 0.922 0.545 0.773 0.639
K-Nearest Neighbours 0.959 0.885 0.625 0.733
Nearest Centroid 0.898 0.46 0.831 0.592
SVM (Linear) 0.959 0.918 0.593 0.72
SVM (RBF) 0.962 0.98 0.585 0.732
Linear SVC 0.959 0.897 0.609 0.725
Gaussian Naive Bayes 0.901 0.461 0.64 0.536
Bernoulli Naive Bayes 0.915 0.547 0.267 0.359
QDA 0.905 0.475 0.647 0.548
LDA 0.954 0.855 0.588 0.697
Extra Trees (Ensemble) 0.994 0.989 1 0.994
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5. Discussion

In this section we will discuss the results through Explainable Al that explain and make machine learning
models more interpretable and trusted have received an increasing amount of attention. These techniques are all
intended to explain how models arrive at their predictions, so that people can better understand and follow the
reasoning behind those predictions—i.e., explaining individual results, looking for patterns of decision-making in
common, and highlighting what factors have the most influence. In this research, we use two lines of tools named
LIME and SHAP to provide intuitive explanations which aid in interpreting the decisions made by models.

5.1.Global Explanations

Global explanation techniques aim to provide an overall understanding of the trained Extra Trees ensemble
model, showing how the model uses input features across all predictions. Gini feature importance comes from
decision trees and tree-based ensembles like Extra Trees. It is calculated based on the reduction in Gini Impurity
when a feature is used to split nodes. Features that frequently reduce impurity gain higher importance scores.
Table 12 show the Top Gini Feature Importances of the Diabetes dataset, where the HbAlc level is the more
importance feature and gender is the low one.

Table (12): Top Gini Feature Importance.

Feature Ginilmportance
HbAlc_level 0.321
blood_ glucose_ level 0.268
Age 0.202
Bmi 0.109
hypertension 0.036
smoking_ history 0.033
Heart_ disease 0.021
Gender 0.009

Also, Permutation importance is a model-agnostic method that measures feature importance based on
performance drop. It works by shuffling each feature's values and observing how much the model's accuracy or
other performance metric decreases. Features that cause larger drops are more important. Table 13 show the Top
Permutation Importances of the Diabetes dataset, where the HbAlc level is the more importance feature and
heart disease is the low one.

Table (13): Top Permutation Importance.

Feature Mean Importance | Std Importance
HbAlc level 0.292 0.0012
blood glucose level 0.254 0.0012
Age 0.131 0.0008
Bmi 0.106 0.0005
Smoking history 0.098 0.0008
Gender 0.071 0.0008
Hypertension 0.047 0.0008
Heart disease 0.027 0.0004

A surrogate decision tree approximates a black-box model’s predictions and lets you see, at a glance, how the
model behaves across all feature values, providing global interpretability via paths, splits, and feature importance.
Where Surrogate Fidelity is 0.826 and Surrogate Max Depth is 3.0. Surrogate Fidelity, with value 0.826 means
the surrogate tree correctly mimics ~82.6% of the black-box predictions. A higher fidelity means the surrogate
gives a more accurate global explanation. The maximum depth of the surrogate tree. Depth limits complexity and
helps maintain interpretability. the value 3.0 means the surrogate tree has three levels of splits from root to leaves,
a depth of 3 gives 82.6% fidelity, which is a nice trade-off between simplicity and accuracy. Figure 9 show
Surrogate tree visualization.
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Surrogate Decision Tree

HOALC Jevel <= 6.7
gini =05
samples = 85955

R E T
samples = 66352
valte = [42049, 23403]

HoALc level <= 5.35
aii = 0376
samples = 57345
value = 42949, 14396]

gini = 0463
samples = 39509
value = [25113.0, 14396.0]

Figure (9): Surrogate tree visualization.

Figure 9. illustrates the Surrogate Tree constructed to approximate the global behavior of the trained black-box
model. The surrogate tree provides an interpretable summary of how the complex model makes decisions using
key clinical features, primarily HbA ¢ level and blood glucose level. The root node splits on HbAlc_level < 6.70,
indicating that this feature is the most influential variable in distinguishing between classes. When HbAlc level
is less than or equal to 6.7, the model further evaluates blood glucose level < 210.0, forming the second major
decision rule. These branches collectively represent the conditions that separate diabetic and non-diabetic
predictions. The next split at HbAlc level < 5.35 refines the classification for individuals with lower HbAlc
levels, further distinguishing subgroups within the non-diabetic class. Leaf nodes on the left (brown) correspond
to class 0 predictions (e.g., non-diabetic), while those on the right (blue) represent class 1 predictions (e.g.,
diabetic). The Gini impurity values indicate the homogeneity of samples within each node, and sample counts
show how many instances fall into each rule. The surrogate tree has a maximum depth of 3 and achieved a
fidelity of 0.826, demonstrating that it provides a simplified yet faithful approximation of the complex model’s
decision process. This visualization highlights that HbAlc level and blood glucose level are the key features

guiding the model’s global decision behavior.

5.2.Local Explanations

A local explanation in Explainable Artificial Intelligence (XAI) refers to the process of interpreting and
understanding the decision-making behavior of a machine learning model for a single instance or specific
prediction. local explanation focuses on identifying the most influential input features that contributed to a
particular output. Local interpretability techniques used here LIME (Local Interpretable Model-Agnostic
Explanations). Table 14 display some random instances feature for local explanation. This approach enables
practitioners to explain why the model produced a certain prediction for an individual case, thereby enhancing
model transparency, trustworthiness, and accountability in critical decision-making applications. The LIME local
explanation of instances in Table 14 shown in Figures 10-14.

Table (14): Instances Feature for Local Explanation.

[ = wnn
2 o 3 2 =, — & - &
g g > o zE %2 = g5 | FEE
2 3 ° =3 s 5 §E 2 s 2 288
o - = I < UE () z a
e Z
19924 0.0 3.0 0.0 0.0 0.0 17.67 4.8 80.0
41603 0.0 46.0 0.0 0.0 4.0 27.32 6.5 90.0
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68027 0.0 40.0 0.0 0.0 0.0 43.21 9.0 126.0
49515 1.0 18.0 0.0 0.0 0.0 19.78 5.0 160.0
89438 1.0 51.0 1.0 0.0 1.0 31.13 6.5 160.0

LIME explanation (instance 19924)
Local explanation for class 1

.

T T T T T T 1
—0.30 -0.25 -0.20 —0.15 -0.10 —0.05 0.00

Figure (10): LIME local explanation of instance 19924.

LIME explanation (instance 41603)
Local explanation for class 1

plaod, glucoss Jevel <= 150:01] _

HbAlc_level <= 5.70

blood_glucose_level <= 130.00

age <= 36.00 4

heart_disease <= 0.00

hypertension <= 0.00

bmi <= 25.62 -

6.10 < HbAlc_level <= 6.60
heart_disease <= 0.00 -

hypertension <= 0.00 -

3.00 < smoking_history <= 4.00 - .
gender <= 0.00 - .
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Figure (11): LIME local explanation of instance 41603.

LIME explanation (instance 68027)
Local explanation for class 1

HbAlc_level > 6.60
blood_glucose_level <= 130.00
heart_disease <= 0.00 -

bmi > 32.97 4 .

hypertension <= 0.00 4

gender <= 0.00

T
—-0.2 0.0 0.2 0.4 0.6

Figure (12): LIME local explanation of instance 68027.

LIME explanation (instance 49515}
Local explanation for class 1

HbAlc_level <= 5.70 -
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bmi <= 25.62
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hypertension <= 0.00

—0.30 —0.25 —0.20 —0.15 -0.10 —0.05 0.00

Figure (13): LIME local explanation of instance 49515.
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LIME explanation (instance 89438)
Local explanation for class 1
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Figure (14): LIME local explanation of instance 89438.

The instance 19924, corresponding to class 1 (diabetic). in figure 10 all features exhibit negative contributions,
indicating that they collectively decrease the probability of diabetes for this specific instance. The feature
HbAlc level (< 5.70) is the most influential factor, strongly decreasing the likelihood of being diabetic. This
observation aligns with established medical guidelines, as HbAlc levels below 5.7% are generally considered
normal. The blood glucose level (< 130.00) is the second most significant contributor, further reducing the
model’s confidence in a diabetic classification, which is consistent with healthy glucose control. The feature age
(< 36.00) also contributes negatively, suggesting that the relatively young age of the individual reduces diabetes
risk. Additionally, the absence of heart disease (heart disease < 0.00) and hypertension (hypertension < 0.00) add
moderate negative influence, reflecting the model’s understanding that these conditions are often comorbid with
diabetes. Finally, the body mass index (Bmi < 25.62) provides a small negative contribution, indicating that
maintaining a normal BMI further lowers the risk prediction. the local LIME explanation for instance 19924
demonstrates that the model’s prediction of a low probability for diabetes is primarily driven by normal HbAlc
and blood glucose levels, a young age, and the absence of cardiovascular and metabolic risk factors. This
explanation confirms the model’s interpretability and consistency with established medical reasoning. And with
the same analytical methodology for the rest of Figures 10-14.

6. Limitations and Future Work

This study has certain limitations that need to be acknowledged. The research was conducted on a single dataset,
but with a large sample size. Although the ensemble models performed well, their hyperparameters were not
highly optimized. Focusing optimization on high-performing models, such as Extra Trees and XGBoost, can
potentially improve robustness and accuracy. The explainability analysis, although informative, was post-hoc and
highlights the need to integrate explainability into model building or build real-time explanation systems for
clinicians to enable feasible deployment. Additionally, the information included static clinical measurements.
Therefore, For future researches, we suggest the following:

e Using more than one dataset from multiple resources can enhance model robustness and improve
generalizability, also integrating temporal information such as longitudinal biomarker trends and historical
medical records may capture disease progression more effectively and yield enhanced predictive accuracy.

o Generalized of the proposed framework to heterogeneous populations, healthcare systems.

e The information included static clinical measurements. Incorporating temporal data, such as long-term
biomarker trends or historical medical information, could more accurately capture disease progression and
improve predictive performance.

¢ Optimize ensemble models hyperparameters.

e The explainability analysis, although informative, was post-hoc and highlights the need to integrate
explainability into model building or build real-time explanation systems for clinicians to enable feasible
deployment.

e Work large-scale validation with diverse institutions and patient cohorts to evaluate the generalizability and
robustness of the proposed model.

¢ Investigate practical implementation aspects and Implications for Clinical Practice, together with calibration
of model predictions, mitigation of fairness and bias concerns, and adaptation to population differences to
ensure safe and equitable deployment in real clinical settings.
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Therefore, in subsequent research, external validation will be conducted on multi-center datasets, hyperparameter
tuning will be thoroughly examined, and temporal modeling strategies will be explored to capitalize on the solid
foundation established in this research.

7. Conclusion

This study demonstrated that Random Over Sampling is the best method for balancing the diabetes dataset after
training on a balanced dataset, where, compared six balancing techniques: Random Over Sampling, Random
Under Sampling, SMOTE (Synthetic Minority Over-sampling Technique), ADASYN (Adaptive Synthetic
Sampling), TomekLinks (Tomek Links Removal) and SMOTEENN (SMOTE + Edited Nearest Neighbors).
Where eight ensemble learning techniques were used, which are (Bagging (Decision Tree), Random Forest,
AdaBoost, Gradient Boosting, Histogram-based Gradient Boosting, extremely randomized Trees (Ensemble),
Voting Classifier (LR + RF + SVM) and XGBoost) where evaluated by Accuracy, Precision, Recall (Sensitivity),
F1 Score and ROC-AUC evaluation matrices . Extremely Randomized Trees outperformed other techniques,
achieving 994% accuracy on the balanced dataset using Random Over Sampling technique because in Extra
Trees, both the split thresholds and frequently the feature subsets are selected randomly. also 14 machine learning
models were trained and tested for comparison with extremely randomized Trees. Explainable Al was also used
to identify the strengths and weaknesses of the model and dataset.
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