A A Comprehensive Review of Intrusion Detection Systems in IoT networks Using ML and DL Techniques

A Comprehensive Review of Intrusion Detection Systems in IoT Networks Using ML and DL Techniques

https://doi.org/10.61710/kjcs.v3i2.111

Authors

  • fatima Rahim wasit
  • Asst.Prof.Dr.Saif Ali Abd Alradha Alsaidi جامعة واسط

Keywords:

IoT, Intrusion Detection System, Machine learning (ML), Deep learning (DL).

Abstract

The Internet of Things (IoT) is growing at an extremely rapid rate, impacting all aspects of our lives and extending to various fields, including wearable technology, smart sensors, and home appliances. However, the rapid growth is coupled with serious security concerns that render these technologies vulnerable to hacking opportunities and erode user privacy, as well as data protection, especially as cyber-attacks become more complex. Intrusion detection is a crucial aspect for tracking and thwarting such attacks. Machine learning (ML) and deep learning (DL) algorithms have ever-increasing efficiency in automating procedures like these. This study aims to provide researchers with a comprehensive overview of contemporary Intrusion Detection System (IDS) techniques employed in the IoT environment, highlighting strengths and weaknesses. It also gives direction to future research by suggesting that more adaptive, lightweight, and efficient intrusion detection systems can be developed to address the unique constraints of IoT networks.

Downloads

Download data is not yet available.

References

G. Thamilarasu and S. Chawla, “Towards deep-learning-driven intrusion detection for the Internet of Things,” Sensors (Switzerland), vol. 19, no. 9, doi: 10.3390/s19091977, 2019.

N. A. Hussien, S. A. A. A. Alsaidi, I. K. Ajlan, M. F. M. Firdhous, and H. T. H. S. Al Rikabi, “Smart shopping system with RFID technology based on internet of things,” International Journal of Interactive Mobile Technologies, vol. 14, no. 4, pp. 17–29, 2020, doi: 10.3991/ijim.v14i04.13511.

A. Alamer, B. Soh, and D. E. Brumbaugh, “MICKEY 2.0.85: A secure and lighter MICKEY 2.0 cipher variant with improved power consumption for smaller devices in the IoT,” Symmetry (Basel), vol. 12, no. 1, Jan. 2020, doi: 10.3390/SYM12010032.

S. Rizvi, A. Kurtz, J. Pfeffer, and M. Rizvi, “Securing the Internet of Things (IoT): A Security Taxonomy for IoT,” in Proceedings - 17th IEEE International Conference on Trust, Security and Privacy in Computing and Communications and 12th IEEE International Conference on Big Data Science and Engineering, Trustcom/BigDataSE 2018, Institute of Electrical and Electronics Engineers Inc., Sep. 2018, pp. 163–168. doi: 10.1109/TrustCom/BigDataSE.2018.00034.

A. R. Khan, M. Kashif, R. H. Jhaveri, R. Raut, T. Saba, and S. A. Bahaj, “Deep Learning for Intrusion Detection and Security of Internet of Things (IoT): Current Analysis, Challenges, and Possible Solutions,” 2022, Hindawi Limited. doi: 10.1155/2022/4016073.

A. G. Ayad, N. A. Sakr, and N. A. Hikal, “A hybrid approach for efficient feature selection in anomaly intrusion detection for IoT networks,” Journal of Supercomputing, Dec. 2024, doi: 10.1007/s11227-024-06409-x.

A. Odeh and A. Abu Taleb, “Ensemble-Based Deep Learning Models for Enhancing IoT Intrusion Detection,” Applied Sciences (Switzerland), vol. 13, no. 21, Nov. 2023, doi: 10.3390/app132111985.

K. Shaukat, T. M. Alam, I. A. Hameed, W. A. Khan, N. Abbas, and S. Luo, “A Review on Security Challenges in Internet of Things (IoT),” in 2021 26th International Conference on Automation and Computing:System Intelligence through Automation and Computing, ICAC 2021, Institute of Electrical and Electronics Engineers Inc., 2021. doi: 10.23919/ICAC50006.2021.9594183.

M. A. Bouke and A. Abdullah, “An empirical assessment of ML models for 5G network intrusion detection: A data leakage-free approach,” e-Prime - Advances in Electrical Engineering, Electronics and Energy, vol. 8, Jun. 2024, doi: 10.1016/j.prime.2024.100590.

B. I. Farhan and A. D. Jasim, “Survey of Intrusion Detection Using Deep Learning in the Internet of Things,” Iraqi Journal for Computer Science and Mathematics, vol. 3, no. 1, pp. 83–93, 2022, doi: 10.52866/ijcsm.2022.01.01.009.

S. H. Rafique, A. Abdallah, N. S. Musa, and T. Murugan, “Machine Learning and Deep Learning Techniques for Internet of Things Network Anomaly Detection—Current Research Trends,” Mar. 01, 2024, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/s24061968.

A. Raj and S. D. Shetty, “IoT Eco-system, Layered Architectures, Security and Advancing Technologies: A Comprehensive Survey,” Jan. 01, 2022, Springer. doi: 10.1007/s11277-021-08958-3.

R. A. Radouan Ait Mouha, “Internet of Things (IoT),” Journal of Data Analysis and Information Processing, vol. 09, no. 02, pp. 77–101, 2021, doi: 10.4236/jdaip.2021.92006.

E. Schiller, A. Aidoo, J. Fuhrer, J. Stahl, M. Ziörjen, and B. Stiller, “Landscape of IoT security,” May 01, 2022, Elsevier Ireland Ltd. doi: 10.1016/j.cosrev.2022.100467.

J. Asharf, N. Moustafa, H. Khurshid, E. Debie, W. Haider, and A. Wahab, “A review of intrusion detection systems using machine and deep learning in internet of things: Challenges, solutions and future directions,” Jul. 01, 2020, MDPI AG. doi: 10.3390/electronics9071177.

L. Santos, C. Rabadão, and R. Gonçalves, “Intrusion Detection Systems in Internet of Things A literature review.”

S. Tsimenidis, T. Lagkas, and K. Rantos, “Deep Learning in IoT Intrusion Detection,” Journal of Network and Systems Management, vol. 30, no. 1, Jan. 2022, doi: 10.1007/s10922-021-09621-9.

A. Khraisat, I. Gondal, P. Vamplew, and J. Kamruzzaman, “Survey of intrusion detection systems: techniques, datasets and challenges,” Cybersecurity, vol. 2, no. 1, Dec. 2019, doi: 10.1186/s42400-019-0038-7.

T. Al-Shurbaji et al., “Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000. Deep Learning-Based Intrusion Detection System For Detecting IoT Botnet Attacks: A Review”, doi: 10.1109/ACCESS.2023.1120000.

M. Ozkan-Okay, R. Samet, O. Aslan, and D. Gupta, “A Comprehensive Systematic Literature Review on Intrusion Detection Systems,” 2021, Institute of Electrical and Electronics Engineers Inc. doi: 10.1109/ACCESS.2021.3129336.

S. El Hajla, E. Mahfoud, Y. Maleh, and S. Mounir, “Attack and anomaly detection in IoT Networks using machine learning approaches,” in Proceedings - 10th International Conference on Wireless Networks and Mobile Communications, WINCOM 2023, Institute of Electrical and Electronics Engineers Inc., 2023. doi: 10.1109/WINCOM59760.2023.10322991.

Y. Otoum and A. Nayak, “AS-IDS: Anomaly and Signature Based IDS for the Internet of Things,” Journal of Network and Systems Management, vol. 29, no. 3, Jul. 2021, doi: 10.1007/s10922-021-09589-6.

A. Khraisat, I. Gondal, P. Vamplew, and J. Kamruzzaman, “Survey of intrusion detection systems: techniques, datasets and challenges,” Cybersecurity, vol. 2, no. 1, Dec. 2019, doi: 10.1186/s42400-019-0038-7.

T. Talaei Khoei and N. Kaabouch, “A Comparative Analysis of Supervised and Unsupervised Models for Detecting Attacks on the Intrusion Detection Systems,” Information (Switzerland), vol. 14, no. 2, Feb. 2023, doi: 10.3390/info14020103.

Z. Ahmad, A. Shahid Khan, C. Wai Shiang, J. Abdullah, and F. Ahmad, “Network intrusion detection system: A systematic study of machine learning and deep learning approaches,” Transactions on Emerging Telecommunications Technologies, vol. 32, no. 1, Jan. 2021, doi: 10.1002/ett.4150.

M. Aljanabi, M. A. Ismail, and A. H. Ali, “Intrusion detection systems, issues, challenges, and needs,” International Journal of Computational Intelligence Systems, vol. 14, no. 1, pp. 560–571, 2021, doi: 10.2991/ijcis.d.210105.001.

P. L. S. Jayalaxmi, R. Saha, G. Kumar, M. Conti, and T. H. Kim, “Machine and Deep Learning Solutions for Intrusion Detection and Prevention in IoTs: A Survey,” IEEE Access, vol. 10, pp. 121173–121192, 2022, doi: 10.1109/ACCESS.2022.3220622.

O. Ogundairo, “Machine Learning Algorithms for Intrusion Detection Systems,” 2024. [Online]. Available: https://www.researchgate.net/publication/382917701

G. Karatas, O. Demir, and O. K. Sahingoz, “Increasing the Performance of Machine Learning-Based IDSs on an Imbalanced and Up-to-Date Dataset,” IEEE Access, vol. 8, pp. 32150–32162, 2020, doi: 10.1109/ACCESS.2020.2973219.

E. M. Roopa Devi and R. C. Suganthe, “Enhanced transductive support vector machine classification with grey wolf optimizer cuckoo search optimization for intrusion detection system,” in Concurrency and Computation: Practice and Experience, John Wiley and Sons Ltd, Feb. 2020. doi: 10.1002/cpe.4999.

B. Yan and G. Han, “Effective Feature Extraction via Stacked Sparse Autoencoder to Improve Intrusion Detection System,” IEEE Access, vol. 6, pp. 41238–41248, Jul. 2018, doi: 10.1109/ACCESS.2018.2858277.

W. Samek, G. Montavon, S. Lapuschkin, C. J. Anders, and K. R. Müller, “Explaining Deep Neural Networks and Beyond: A Review of Methods and Applications,” Proceedings of the IEEE, vol. 109, no. 3, pp. 247–278, Mar. 2021, doi: 10.1109/JPROC.2021.3060483.

G. Thamilarasu and S. Chawla, “Towards deep-learning-driven intrusion detection for the internet of things,” Sensors (Switzerland), vol. 19, no. 9, May 2019, doi: 10.3390/s19091977.

H. Liu and B. Lang, “Machine learning and deep learning methods for intrusion detection systems: A survey,” Oct. 01, 2019, MDPI AG. doi: 10.3390/app9204396.

S. Li et al., “CRSF: An Intrusion Detection Framework for Industrial Internet of Things Based on Pretrained CNN2D-RNN and SVM,” IEEE Access, vol. 11, pp. 92041–92054, 2023, doi: 10.1109/ACCESS.2023.3307429.

A. S. Qureshi, A. Khan, N. Shamim, and M. H. Durad, “Intrusion detection using deep sparse auto-encoder and self-taught learning,” Neural Comput Appl, vol. 32, no. 8, pp. 3135–3147, Apr. 2020, doi: 10.1007/s00521-019-04152-6.

H. Liao et al., “A Survey of Deep Learning Technologies for Intrusion Detection in Internet of Things,” IEEE Access, vol. 12, pp. 4745–4761, 2024, doi: 10.1109/ACCESS.2023.3349287.

Z. K. Maseer, R. Yusof, S. A. Mostafa, N. Bahaman, O. Musa, and B. A. S. Al-Rimy, “DeepIoT.IDS: Hybrid deep learning for enhancing IoT network intrusion detection,” Computers, Materials and Continua, vol. 69, no. 3, pp. 3946–3967, 2021, doi: 10.32604/cmc.2021.016074.

I. H. Sarker, “Deep Cybersecurity: A Comprehensive Overview from Neural Network and Deep Learning Perspective,” SN Comput Sci, vol. 2, no. 3, May 2021, doi: 10.1007/s42979-021-00535-6.

Widad K. Mohammed, Mohammed A. Taha, Haider D. A. Jabar, and Saif Ali Abd Alradha Alsaidi, “Object Detection Techniques: A Review,” Wasit Journal of Computer and Mathematics Science, vol. 2, no. 3, pp. 59–68, Sep. 2023, doi: 10.31185/wjcms.165.

L. Ashiku and C. Dagli, “Network Intrusion Detection System using Deep Learning,” in Procedia Computer Science, Elsevier B.V., 2021, pp. 239–247. doi: 10.1016/j.procs.2021.05.025.

S. M. Kasongo, “An advanced intrusion detection system for IIoT Based on GA and tree based algorithms,” IEEE Access, vol. 9, pp. 113199–113212, 2021, doi: 10.1109/ACCESS.2021.3104113.

R. A. Disha and S. Waheed, “Performance analysis of machine learning models for intrusion detection system using Gini Impurity-based Weighted Random Forest (GIWRF) feature selection technique,” Cybersecurity, vol. 5, no. 1, Dec. 2022, doi: 10.1186/s42400-021-00103-8.

H. C. Altunay and Z. Albayrak, “A hybrid CNN + LSTMbased intrusion detection system for industrial IoT networks,” Engineering Science and Technology, an International Journal, vol. 38, Feb. 2023, doi: 10.1016/j.jestch.2022.101322.

S. A. Bakhsh, M. A. Khan, F. Ahmed, M. S. Alshehri, H. Ali, and J. Ahmad, “Enhancing IoT network security through deep learning-powered Intrusion Detection System,” Internet of Things (Netherlands), vol. 24, Dec. 2023, doi: 10.1016/j.iot.2023.100936.

J. B. Awotunde et al., “An Ensemble Tree-Based Model for Intrusion Detection in Industrial Internet of Things Networks,” Applied Sciences (Switzerland), vol. 13, no. 4, Feb. 2023, doi: 10.3390/app13042479.

T. T. H. Le, R. W. Wardhani, D. S. Catur Putranto, U. Jo, and H. Kim, “Toward Enhanced Attack Detection and Explanation in Intrusion Detection System-Based IoT Environment Data,” IEEE Access, vol. 11, pp. 131661–131676, 2023, doi: 10.1109/ACCESS.2023.3336678.

N. Sayed, M. Shoaib, W. Ahmed, S. N. Qasem, A. M. Albarrak, and F. Saeed, “Augmenting IoT Intrusion Detection System Performance Using Deep Neural Network,” Computers, Materials and Continua, vol. 74, no. 1, pp. 1351–1374, 2023, doi: 10.32604/cmc.2023.030831.

M. Sarhan, S. Layeghy, N. Moustafa, M. Gallagher, and M. Portmann, “Feature extraction for machine learning-based intrusion detection in IoT networks,” Digital Communications and Networks, vol. 10, no. 1, pp. 205–216, Feb. 2024, doi: 10.1016/j.dcan.2022.08.012.

A. Almotairi, S. Atawneh, O. A. Khashan, and N. M. Khafajah, “Enhancing intrusion detection in IoT networks using machine learning-based feature selection and ensemble models,” Systems Science and Control Engineering, vol. 12, no. 1, 2024, doi: 10.1080/21642583.2024.2321381.

M. M. Inuwa and R. Das, “A comparative analysis of various machine learning methods for anomaly detection in cyberattacks on IoT networks,” Internet of Things (Netherlands), vol. 26, Jul. 2024, doi: 10.1016/j.iot.2024.101162.

Y. Xiao, Y. Feng, and K. Sakurai, “An Efficient Detection Mechanism of Network Intrusions in IoT Environments Using Autoencoder and Data Partitioning,” Computers, vol. 13, no. 10, Oct. 2024, doi: 10.3390/computers13100269.

J. Li, M. S. Othman, H. Chen, and L. M. Yusuf, “Optimizing IoT intrusion detection system: feature selection versus feature extraction in machine learning,” J Big Data, vol. 11, no. 1, Dec. 2024, doi: 10.1186/s40537-024-00892-y.

H. R. Sayegh, W. Dong, and A. M. Al-madani, “Enhanced Intrusion Detection with LSTM-Based Model, Feature Selection, and SMOTE for Imbalanced Data,” Applied Sciences (Switzerland), vol. 14, no. 2, Jan. 2024, doi: 10.3390/app14020479.

Published

2025-06-25

How to Cite

Rahim, fatima, & Ali Abd Alradha Alsaidi, A. . . (2025). A A Comprehensive Review of Intrusion Detection Systems in IoT networks Using ML and DL Techniques: A Comprehensive Review of Intrusion Detection Systems in IoT Networks Using ML and DL Techniques. AlKadhim Journal for Computer Science, 3(2), 84–95. https://doi.org/10.61710/kjcs.v3i2.111