Computationally Efficient Hybrid Framework for MNIST Handwritten Digit Recognition
Main Article Content
Abstract
This research work suggests a combination classification technique for handwritten digit recognition based on MNIST dataset. The design embraces Principal Component Analysis (PCA) to reduce the level of dimensionality, KMeans clustering to get the pattern of the framework, and Random Forest to make the final prediction. By compressing the feature space into a 50 dimensional space and adding in cluster information, we are able to attain an accuracy of about 93.1 percent. The significant contributions of this paper are to prove the PCA-KMeans integration useful to improve classification, offering a computationally efficient solution as alternative to deep learning model, and to prove that feature augmentation using clustering outcomes leads to better discrimination of visually similar digits. The data suggest that the referred to hybrid model is stable and feasible approach to image identification and pattern recognition, which could be applied to more complicated dataset.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Z. Alom et al., “A State-of-the-Art Survey on Deep Learning Theory and Architectures,” vol. 8, p. 292, 2019, doi: 10.3390/electronics8030292.
D. C. Cireşan, U. Meier, L. M. Gambardella, and J. Schmidhuber, “Deep, big, simple neural nets for handwritten digit recognition,” Neural Comput., vol. 22, no. 12, pp. 3207–3220, Dec. 2010, doi: 10.1162/NECO_A_00052.
E. Strubell, A. Ganesh, and A. McCallum, “Energy and Policy Considerations for Deep Learning in NLP,” Proc. 57th Annu. Meet. Assoc. Comput. Linguist., pp. 3645–3650, 2019, doi: 10.18653/V1/P19-1355.
Y. Wang, C. Xu, C. Xu, and D. Tao, “Beyond Filters: Compact Feature Map for Portable Deep Model,” Int. Conf. Mach. Learn., 2017.
I. T. Jollife and J. Cadima, “Principal component analysis: a review and recent developments,” Philos. Trans. A. Math. Phys. Eng. Sci., vol. 374, no. 2065, Apr. 2016, doi: 10.1098/RSTA.2015.0202.
R. Shwartz-Ziv and A. Armon, “Tabular data: Deep learning is not all you need,” Inf. Fusion, vol. 81, pp. 84–90, May 2022, doi: 10.1016/J.INFFUS.2021.11.011.
B. Gope, S. Pande, N. Karale, S. Dharmale, and P. Umekar, “Handwritten digits identification using mnist database via machine learning models,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1022, no. 1, 2021, doi: 10.1088/1757-899X/1022/1/012108.
A. K. Agrawal, A. K. Shrivas, and V. K. Awasthi, “An Improved and Customized Hybrid of Deep and Machine Learning Technique Model for Handwritten Digit Recognition,” SAMRIDDHI A J. Phys. Sci. Eng. Technol., vol. 14, no. 01 SPL, pp. 13–19, 2022, doi: 10.18090/samriddhi.v14spli01.3.
H. huang Zhao and H. Liu, “Multiple classifiers fusion and CNN feature extraction for handwritten digits recognition,” Granul. Comput., vol. 5, no. 3, pp. 411–418, Jul. 2020, doi: 10.1007/S41066-019-00158-6.
Y. S. Ali, R. H. Qasim, S. M. Searan, O. M. Jasim, and I. S. J. Alzubaydı, “Optimizing Random Forest for Handwritten Digit Recognition Through Hyper-parameter Tuning,” Fusion Pract. Appl., vol. 20, no. 1, pp. 155–165, 2025, doi: 10.54216/FPA.200112.
S. Ahlawat et al., “Improved Handwritten Digit Recognition Using Convolutional Neural Networks (CNN),” Sensors 2020, Vol. 20, vol. 20, no. 12, pp. 1–18, Jun. 2020, doi: 10.3390/S20123344.
Y. G R and A. Ali Ahmed Ali, “PCA Based English Handwritten Digit Recognition,” Int. J. Adv. Res. Comput. Sci., vol. 8, no. 5, pp. 1426–1429, 2017.
R. Sheikh, M. Patel, and A. Sinhal, “Recognizing MNIST Handwritten Data Set Using PCA and LDA,” pp. 169–177, 2020, doi: 10.1007/978-981-15-1059-5_20.
Z. Sun, G. Wang, P. Li, H. Wang, M. Zhang, and X. Liang, “An improved random forest based on the classification accuracy and correlation measurement of decision trees,” Expert Syst. Appl., vol. 237, p. 121549, Mar. 2024, doi: 10.1016/J.ESWA.2023.121549.
A. Azgar, M. Imran Nazir, A. Akter, M. Saddam Hossain, M. Anwar Hussen Wadud, and M. Reazul Islam, “MNIST Handwritten Digit Recognition Using a Deep Learning-Based Modified Dual Input Convolutional Neural Network (DICNN) Model,” Lect. Notes Networks Syst., vol. 1014 LNNS, pp. 563–573, 2024, doi: 10.1007/978-981-97-3562-4_44.
H. Shao, E. Ma, M. Zhu, X. Deng, and S. Zhai, “MNIST Handwritten Digit Classification Based on Convolutional Neural Network with Hyperparameter Optimization,” Intell. Autom. Soft Comput., vol. 36, no. 3, pp. 3595–3606, Mar. 2023, doi: 10.32604/IASC.2023.036323.
L.-P. Chen, “Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar: Foundations of machine learning, second edition,” Stat. Pap. 2019 605, vol. 60, no. 5, pp. 1793–1795, Jul. 2019, doi: 10.1007/S00362-019-01124-9.