Calculation of the Electronic Properties Phthalocyanine (H2Pc), Silicon Phthalocyanine (Sipc), Phosphorus Phthalocyanine (PPc) and Energy Gap by the AM1 Method
Keywords:
Phthalocyanine, Web MO, LEDs, AM1, PC model, H2Pc, PcSi, PcP, MPcs, PDTAbstract
Many semi-empirical methods are available in Gaussian 16. This patch enables analytical gradients and frequencies in addition to increasing efficiency by replacing the code from MOPAC open source, AM1 and PM3 technologies. In the case of a pure molecule, the values of total energy, bond energy, electronic energy, and nuclear energy (-170.893, -1496.855, -4332.708, 45) Kcal/mol have been successively added. After adding Si and P to the free Phthalocyanine molecule, the values transformed to (-133.30, -4987.486, -1294.027, 11.607) Kcal/mol. For the two resulting molecules (PcSi and PcP), the values became (-136.108, -4858.63, -9354.14, 79.930) Kcal/mol. Notably, the first number indicated an increase. Specifically, for total energy numbers, there was a decrease from -170.893 to -133.3 Kcal/mol when adding Si, and a decrease to -136.108 Kcal/mol when adding P. Overall, the energy value increased with both additions, but the bonding energy notably decreased with Si (-1496.855 to -4987.486 Kcal/mol) and P (-4858.63 Kcal/mol). Electronic energy increased from -4332.708 to -1294.027 Kcal/mol when Si was added. Nuclear energy decreased from 45.036 to 11.607 Kcal/mol when Si was added (increasing to 79.930 Kcal/mol with P). The Heat of Formation (H.o.F.) in Kcal/mol equaled 1565.04 when P was added, 1193.384 when Si was added, and 1531.528 when P was added again. The substantial impact of silicon on Phthalocyanine was evident. Furthermore, the dipole moment of the Phthalocyanine molecule, initially at D 3.687, decreased to D 2.093 and D 4.137 when Si was added first and P the second time, showcasing the significant impact of P due to its high atomic number. Determining the HOMO and LUMO and computing the values of Wavenumber, Wavelength, and Symmetry for the three molecules provided a clear illustration. The computation of electrical potential, electronic orbitals, and energy gap revealed an electronic density of 0.346 eV in the case of the free molecule H2Pc, 5.006 eV in the molecule PPc, and 5.660 eV in the case of SiPc. This offers a comprehensive understanding of the impact of adding P and Si to H2Pc.
References
Eunkyoung Kim,"Phthalocyanine Nanostructures",Korea Research Institute of Chemical Technology, Yusung, Daejeon, Korea,(2004)
J. Blochwitz, M. Pfeiffer, T. Fritz, K. Leo, "Appl. Phys." Lett. 73. (1998)
C.C. Leznoff, A.B.P. Lever, Phthalocyanines, Properties and applications,vol.3, VCH, New York, (1993)
F.Young, M. Shtein, S.R. Forrest, "Nature Mater ", 4 ,(2005) .
D.X. Wang, Y. Tanaka, M. Iizuka, S. Kuniyoshi, S. Kudo, K.Tanaka, Jpn. J. "Appl. Phys.", 18 (1999)
N.B. Mc Keown, "Phthalocyanine Materials", Cambridge University Press, Cambridge, (1998).
J. Kaufhold, K. Hauffe, Ber. Bunsenges ,"Phys. Chem." 69 (1965).
M. Hanack, M. Lang, "Adv. Mat." 6 (1994) .
B.J. Prince, B.E. Williamson, R.J. Reeves, J. ,"Lumin." 93 (2001) 293.
A.O. Ribeiro, J.C. Biazzotto, O.A. Serra, J. ,"Non-Cryst. Solids", 273 (2000) .
S. Seelan, A.K. Sinha, D. Srinivas, S. Sivasanker, J. Mol. Catal.," A:Chem. "157 (2000).
R. Hiesgen, M. Raebisch, H. Boettcher, D. Meissner, "Energy Mater. Sol. Cells" , (2000) .
H. Peisert et al., "Chem. Phys." Lett. 403 (2005) .
W. Kowalsky et al., "Phys. Chem. Chem. Phys." 1 (1999) .
J.R. Ostrick et al., J., "Appl. Phys." 81 (1997)
S.C. Mathur, N. Ramesh, Chem. Phys. Lett. 37 (1975) .
H. Peisert et al., J. Appl. Phys. 96 (2004) .
M.M. El-Nahass, Z. El-Gohary, H.S. Soliman, Opt. Laser Technol.35 (2003)
I. Biswas, H. Peisert, T. Schwieger, D. Dini, M. Hanack, M. Knupfer,T. Schmidt, T. Chasse, J. Chem. Phys. 122 (2005).
H. Peisert et al., Chem. Phys. Lett. 403 (2005) .
E. Jungyoon, S. Kim, E. Lim, K. Lee, D. Cha, B. Friedman, "Appl.Surf. Sci." 205 (2003)
J. Gimzewski, E. Stoll, R. Schlittler, Scanning tunneling microscopy of individual molecules
of copper phthalocyanine adsorbed on polycrystalline silver surfaces. Surf. Sci. 181(1–2), (1987).
H. Ohtani, R.J.Wilson, S. Chiang, C.M. Mate, Scanning tunneling microscopy observations of
benzene molecules on the Rh(111)−(3×3)(C6H6 +2CO) surface. Phys. Rev. Lett. 60(1988).
P.H. Lippel, R.J.Wilson, M.D. Miller, C.Wöll, S. Chiang, High-resolution imaging of copper phthalocyanine by scanning-tunneling microscopy. Phys. Rev. Lett. 62(2), 171–174 (1989).
G.V. Nazin, X.H. Qiu,W. Ho,Visualization and spectroscopy of a metal-molecule-metal bridge.
Science 302(5642), 77–81 (2003).
X.W. Tu, G. Mikaelian, W. Ho, Controlling single-molecule negative differential resistance
in a double-barrier tunnel junction. Phys. Rev. Lett. 100(12), 126807 (2008).
X. Lu, K.W. Hipps, X.D. Wang, U. Mazur, Scanning tunneling microscopy of metal phthalocyanines:
the d7 and d9 cases. J. Am. Chem. Soc. 118(30), 7197–7202 (1996).
A. Zhao, Controlling the kondo effect of an adsorbed magnetic ion through its chemical bonding.
Science 309(5740), 1542–1544 (2005).
C. Iacovita, M. Rastei, B. Heinrich, T. Brumme, J. Kortus, L. Limot, J. Bucher, Visualizing
the spin of individual cobalt-phthalocyanine molecules. Phy. Rev. Lett. 101(11), (2008)
A. Scarfato, S. Chang, S. Kuck, J. Brede, G. Hoffmann, R.Wiesendanger, Scanning tunneling
microscope study of iron(II) phthalocyanine growth on metals and insulating surfaces. Surf. (2008)
N. Tsukahara, S. Shiraki, S. Itou, N. Ohta, N. Takagi, M. Kawai, Evolution of kondo resonance
from a single impurity molecule to the two-dimensional lattice. Phys. Rev. Lett. 106(18), (2011)
X. Lu, K.W. Hipps, Scanning tunneling microscopy of metal phthalocyanines: d6 and d8 cases.
J. Phys. Chem. B 101(27), 5391–5396 (1997).
T.G. Gopakumar,M. Lackinger, M. Hackert, F. Müller, M. Hietschold, Adsorption of palladium
phthalocyanine on graphite: STM and LEED study. J. Phys. Chem. B 108(23), 7839–7843,(2004).
M. Koudia, M. Abel, C. Maurel, A. Bliek, D. Catalin, M. Mossoyan, J. Mossoyan, L. Porte,
Influence of chlorine substitution on the self-assembly of zinc phthalocyanine. J. Phys. Chem.B , (2006).
Y.H. Jiang, W.D. Xiao, L.W. Liu, L.Z. Zhang, J.C. Lian, K. Yang, S.X. Du, H. Gao, Selfassembly
of metal phthalocyanines on Pb(111) and Au(111) surfaces at submonolayer coverage. J. Phys. Chem. C (2011).
K.J. Franke, G. Schulze, J.I. Pascual, Competition of superconducting phenomena and Kondo
screening at the nanoscale. Science 332(6032), 940–944 (2011).
Y. Wang, J. Kröger, R. Berndt, W. Hofer, Structural and electronic properties of ultrathin tinphthalocyanine films on Ag(111) at the single-molecule level. Angewandte Chem. Int. Edn.
(2009).
D. W. DeWulf, J. K. Leland , L. Wheeler, A. J. Bard, D.A. B,D. R. Dininny, and M.E. Kenney,
"Isolation, Spectroscopic Silicon Properties Phthalocyanines,and Electrochemical Properties of Two Oligomeric", The University of Texas, Austin,(1986)
Jin-ping Chen,Xue-song Zhang ,"Phosphorous Phthalocyanine Analogues as Degradable Corrosion
Inhibitor of Mild Steel in 1 mol/L HCl", College of Pipeline and Civil Engineering, China University
of Petroleum, Qingdao 266580, China (2018).
Y. Wang, J. Kröger, R. Berndt, H. Tang, Molecular nanocrystals on ultrathin NaCl films on
Au(111). J. Am. Chem. Soc, (2010).
Z. Hu, B. Li, A. Zhao, J. Yang, J.G. Hou, Electronic and magnetic properties of metal phthalocyanines
on Au(111) surface: a first-principles study. J. Phys. Chem,(2008).
M. Takada, H. Tada, Direct observation of adsorption-induced electronic states by low temperature
scanning tunneling microscopy. Ultramicroscopy , (2005)
F.l Wahab and et al," Electrical characterization of cobalt phthalocyanine/n-Si Heterojunction", Faculty
of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology Topi, Pakistan(2014)
F. Roth, and et al," Electronic properties of Mn-Phthalocyanine - C60 bulk heterojunctions: combining photoemission and electron energy-loss spectroscopy",1Center for Free-Electron Laser Science / DESY, Notkestra, Hamburg, Germany,(2015).
G. appel and et al ..," Orientation studies of Si-phthalocyanine sulfonic acids cast on SiOx substr ates", USA,(2002).
T. L. Doane, and et al," Photophysics of Silicon Phthalocyanines in Aqueous Media", Center for Chemical Dynamics Department of Chemistry Case Western Reserve University,USA,(2013).