Pepper Leaf Disease Detection Using Deep Learning Techniques

https://doi.org/10.61710/kjcs.v3i3.118

المؤلفون

  • Lafta Raheem Ali Al-khazraji

الكلمات المفتاحية:

MobileNetV2, PlantVillage dataset, Deep learning, Adam optimizer، MobileNetV2، PlantVillage dataset، Deep learning، Adam optimizer

الملخص

Early diagnosis of pests and plant diseases is crucial for preventing significant crop losses. This study proposes a leaf disease detection system using MobileNetV2 integrated with multiple optimization techniques (Adam and learning rate scheduling). Evaluated on the Pepper PlantVillage dataset, the MobileNetV2 model employs patch embedding and attention mechanisms for feature extraction, with SoftMax used for final classification. The model was further validated on a multi-class Apple PlantVillage dataset. Results demonstrate high accuracy: 97.03% for pepper and 94.63% for apple classification. Comparative analysis with CNN architectures shows superior efficiency and faster convergence for our model, outperforming Inception v3 (96.81%) and VGG-19 (94.93%) on the pepper dataset.

التنزيلات

بيانات التنزيل غير متوفرة بعد.

المراجع

S. A. Jebur, M. A. Mohammed, L. R. Ali, and D. H. Abd, “MIX - Hybrid Convolutional Neural Network Framework with Explainable Artificial Intelligence for Fig Leaves Disease Detection.pdf,” Int. J. Intell. Eng. Syst., vol. 18, no. 4, pp. 881–895, 2025, doi: 10.22266/ijies2025.0531.57.

L. Li, S. Zhang, and B. Wang, “Apple leaf disease identification with a small and imbalanced dataset based on lightweight convolutional networks,” Sensors, vol. 22, no. 1, 2022, doi: 10.3390/s22010173.

L. R. Al-khazraji, M. A. Mohammed, D. H. Abd, W. Khan, B. Khan, and A. J. Hussain, “Image dataset of important grape varieties in the commercial and consumer market,” Data Br., vol. 47, p. 108906, 2023, doi: 10.1016/j.dib.2023.108906.

L. R. Ali and R. Q. Abdul-Kadim, “The Role of Artificial Intelligence in Digitizing Cultural Heritage: A Review,” Iraqi J. Humanit. Soc. Sci. Res., vol. 5, no. 16S, pp. 307–322, 2025.

A. K. Nawar et al., “Heart Attack Prediction by Integrating Independent Component Analysis with Machine Learning Classifiers,” in 17th International Conference on Development in eSystem Engineering (DeSE), Khorfakkan, United Arab Emirates, 2024, pp. 439–444. doi: 10.1109/DeSE63988.2024.10912055.

A. Z. Mohammed and L. E. George, “Osteoporosis detection using convolutional neural network based on dual-energy X-ray absorptiometry images,” Indones. J. Electr. Eng. Comput. Sci., vol. 29, no. 1, pp. 315–321, 2022, doi: 10.11591/ijeecs.v29.i1.pp315-321.

L. Alkhazraji et al., “Employing the Concept of Stacking Ensemble Learning to Generate Deep Dream Images Using Multiple CNN Variants,” Intell. Syst. with Appl., p. 200488, 2025.

S. A. Jebur, K. A. Hussein, H. K. Hoomod, L. Alzubaidi, A. A. Saihood, and Y. Gu, “A Scalable and Generalized Deep Learning Framework for Anomaly Detection in Surveillance Videos,” International Journal of Intelligent Systems, 2025 (1), 2025, doi: 10.1155/int/1947582.

F. M. Bachay and M. H. Abdulameer, “Hybrid Deep Learning Model Based on Autoencoder and CNN for Palmprint Authentication,” Int. J. Intell. Eng. Syst., vol. 15, no. 3, pp. 488–499, 2022, doi: 10.22266/ijies2022.0630.41.

G. Pacal, I., & Işık, “Utilizing convolutional neural networks and vision transformers for precise corn leaf disease identification,” Neural Comput. Appl., vol. 37, no. 4, pp. 2479–2496, 2025, doi: https://doi.org/10.1007/s00521-024-10769-z.

L. Alzubaidi et al., “ATD Learning: A secure, smart, and decentralised learning method for big data environments,” Inf. Fusion, vol. 118, p. 102953, 2025, doi: https://doi.org/10.1016/j.inffus.2025.102953.

O. Hospodarskyy, V. Martsenyuk, N. Kukharska, and S. Sverstiuk, “Understanding the Adam Optimization Algorithm in Machine Learning,” in CITI’2024: 2nd International Workshop on Computer Information Technologies in Industry 4.0, Ternopil, Ukraine, 2024, pp. 235–248. [Online]. Available: CEUR-WS.org/Vol-3742/paper17.pdf

J. Park, D. Yi, and S. Ji, “A Novel Learning Rate Schedule in Optimization for Neural Networks and It ’ s Convergence,” Symmetry (Basel)., vol. 12, no. 4, p. 660, 2020, doi: 10.3390/sym12040660.

B. V. Nikith, N. K. S. Keerthan, M. S. Praneeth, and D. T. Amrita, “Leaf Disease Detection and Classification,” Procedia Comput. Sci., vol. 218, pp. 291–300, 2022, doi: 10.1016/j.procs.2023.01.011.

A. Ghodekar, U. Kingdom, and A. Kumar, “LightLeafNet: Lightweight and efficient NASNetmobile architecture for tomato leaf disease classification. Available at SSRN 4570347.,” 2023.

S. Liu et al., “An apple leaf disease identification model for safeguarding apple food safety,” Food Sci. Technol., vol. 43, no. e104322, 2023.

M. M. Khalid and O. Karan, “Deep Learning for Plant Disease Detection,” Int. J. Math. Stat. Comput. Sci., vol. 2, pp. 75–84, 2024, doi: 10.59543/ijmscs.v2i.8343.

W. Ullah, K. Javed, M. Attique, K. Faisal, Y. Alghayadh, and M. Wasim, “Discover Sustainability Efficient identification and classification of apple leaf diseases using lightweight vision transformer ( ViT ),” Discov. Sustain., 2024, doi: 10.1007/s43621-024-00307-1.

M. Chilakalapudi and S. Jayachandran, “Multi-classi fi cation of disease induced in plant leaf using chronological Flamingo search optimization with transfer learning,” PeerJ Comput. Sci., vol. 10, p. e1972, 2024, doi: 10.7717/peerj-cs.1972.

E. Moupojou, A. Tagne, F. Retraint, and M. Nkenlifack, “FieldPlant : A Dataset of Field Plant Images for Plant Disease Detection and Classification With Deep Learning,” IEEE Access, vol. 11, no. February, pp. 35398–35410, 2023, doi: 10.1109/ACCESS.2023.3263042.

منشور

2025-09-25

كيفية الاقتباس

Raheem Ali Al-khazraji, L. (2025). Pepper Leaf Disease Detection Using Deep Learning Techniques. مجلة الكاظم لعلوم الحاسوب, 3(3), 45–54. https://doi.org/10.61710/kjcs.v3i3.118