Cognitive Honeypots AI-Enhanced Deception for Proactive Threat Hunting
الكلمات المفتاحية:
Cognitive Honeypots، AI-Enhanced Deception، Proactive Threat Hunting، Reinforcement Learning، Cybersecurityالملخص
The rapidly increasing complexity of cyber threats, including AI-powered attacks, is forcing a shift in defense strategies from reactive to proactive approaches. Traditional honeypots remain largely static and easily identifiable, while newer AI-enhanced models emphasize realism but still lack deep understanding of attacker cognition. To address this gap, this paper introduces CogniTrap, a novel framework that combines a high-interaction honeypot with an AI-driven cognitive deception engine. CogniTrap dynamically creates and adapts “cognitive decoys” designed to exploit attackers’ biases and reasoning flaws. A prototype of CogniTrap was developed and deployed, where decoy placements and adaptations were optimized using reinforcement learning informed by live analysis of attacker tactics, techniques, and procedures (TTPs). Intelligence gathered from triggered decoys was transformed into proactive hypotheses for threat hunting in production environments. Experimental results from comparative 30-day live deployments showed that CogniTrap increased attacker dwell time by 45% compared to a standard high-interaction honeypot and generated higher interaction rates with deceptive assets. Furthermore, it was able to produce high-fidelity threat hunting queries based on attacker cognitive patterns, validating its practical utility. This research marks the first implementation-based framework for adaptive cognitive honeypots, bridging the gap between theoretical cognitive security concepts and operational proactive threat hunting. By providing architecture, algorithms, and empirical validation, CogniTrap establishes a new paradigm for intelligent cyber defense.
التنزيلات
المراجع
Morić, Z., Dakić, V., & Regvart, D. (2025). Advancing cybersecurity with honeypots and deception strategies. Informatics, 12(1), 14. https://doi.org/10.3390/informatics12010014
Bhardwaj, A. (2024). Proactive threat hunting to detect persistent behavior. Alexandria Engineering Journal, 63(1), 73–85. https://doi.org/10.1016/j.aej.2023.11.020
Mahboubi, A. (2024). Evolving techniques in cyber threat hunting: A systematic approach. Journal of Network and Computer Applications, 230, 103632. https://doi.org/10.1016/j.jnca.2024.103632
Iyer, K. I. (2021). Adaptive honeypots: Dynamic deception tactics in modern cyber defense. International Journal of Scientific Research in Archives, 4(1), 45–53. https://doi.org/10.30574/ijsra.2021.4.1.0210
Uddin, M. (2025). Generative AI revolution in cybersecurity: A comprehensive study. Artificial Intelligence Review. https://doi.org/10.1007/s10462-025-11219-5
Cyber deception: State of the art, trends, and open issues. (2024). arXiv. https://arxiv.org/html/2409.07194v1
Noguerol, L. O. (2025). AI-generated honeypots that learn and adapt. Cyber Security Tribe Blog. https://www.cybersecuritytribe.com/articles/ai-generated-honeypots-that-learn-and-adapt
Thilakarathne, N. N. (2025). Cyber threat intelligence platform using deception for smart agriculture. Sensors, 25(7), 1861. https://doi.org/10.3390/s25071861
Gizzarelli, E. (2023). Honeypot and generative AI (SYNAPSE project). Master’s Thesis, Politecnico di Torino. https://webthesis.biblio.polito.it/33140/1/tesi.pdf
Kareem, S. A., Sachan, R. C., & Malviya, R. K. (2024). AI-driven adaptive honeypots for dynamic cyber threats. SSRN Electronic Journal. https://ssrn.com/abstract=4966935
Reti, D., Elzer, K., Fraunholz, D., Schneider, D., & Schotten, H. (2023). Evaluating deception and moving target defense with network attack simulation. arXiv. https://arxiv.org/abs/2301.10629
Sayed, M. A., Anwar, A. H., Kiekintveld, C., Bosansky, B., & Kamhoua, C. (2023). Cyber deception against zero-day attacks: A game theoretic approach. arXiv. https://arxiv.org/abs/2307.13107
Pawlick, J., Colbert, E., & Zhu, Q. (2017). A game-theoretic taxonomy of defensive deception for cybersecurity. arXiv. https://arxiv.org/abs/1712.05441
Zhang, L., & Thing, V. L. L. (2021). Three decades of deception techniques in active cyber defense. arXiv. https://arxiv.org/abs/2104.03594
Wikipedia contributors. (2025). Deception technology. In Wikipedia. https://en.wikipedia.org/wiki/Deception_technology
Wikipedia contributors. (2025). Honeypot (computing). In Wikipedia. https://en.wikipedia.org/wiki/Honeypot_(computing)
EdTech Magazine. (2025, January 30). AI creates realistic honeypots for cybersecurity. EdTech Magazine. https://edtechmagazine.com
SSRN. (2025). Systematic review of honeypot data collection, threat intelligence sharing, and AI/ML applications. SSRN Electronic Journal. https://ssrn.com
JRPS Journal. (2025). Enhancing cybersecurity with AI-driven dynamic honeypots. Journal for Research Publication and Seminar. https://jrpsjournal.com
Prasad, N. (2025). A survey of cyber threat attribution: ML-powered behavioral analytics. Computers & Security, 140, 103688. https://doi.org/10.1016/j.cose.2025.103688
Reti, D., Elzer, K., Fraunholz, D., Schneider, D., & Schotten, H. (2023). Evaluating deception & moving target defense in network simulations. arXiv. https://arxiv.org/abs/2301.10629
Sayed, M. A., et al. (2023). Game theory for cyber deception against zero-day attacks. arXiv. https://arxiv.org/abs/2307.13107
Pawlick, J., Colbert, E., & Zhu, Q. (2017). Game-theoretic defensive deception survey. arXiv. https://arxiv.org/abs/1712.05441
Zhang, L., & Thing, V. L. L. (2021). Retrospect & outlook of deception techniques. arXiv. https://arxiv.org/abs/2104.03594
Wikipedia contributors. (2025). Deception technology. In Wikipedia. https://en.wikipedia.org/wiki/Deception_technology
Wikipedia contributors. (2025). Honeypot computing. In Wikipedia. https://en.wikipedia.org/wiki/Honeypot_(computing)
Cyber Security Tribe. (2025). Adaptive AI honeypots that learn. Cyber Security Tribe Blog. https://www.cybersecuritytribe.com
Morić, Z., Dakić, V., & Regvart, D. (2025). Comparing honeypot solutions for threat detection. Informatics, 12(1), 14. https://doi.org/10.3390/informatics12010014
Bhardwaj, A. (2024). Persistent behavior detection via proactive hunting. Alexandria Engineering Journal, 63(1), 73–85. https://doi.org/10.1016/j.aej.2023.11.020
Mahboubi, A. (2024). Systematic threat hunting techniques. Journal of Network and Computer Applications, 230, 103632. https://doi.org/10.1016/j.jnca.2024.103632
Iyer, K. I. (2021). Adaptive dynamic honeypots. International Journal of Scientific Research in Archives, 4(1), 45–53. https://doi.org/10.30574/ijsra.2021.4.1.0210
Uddin, M. (2025). Generative AI in cybersecurity. Artificial Intelligence Review. https://doi.org/10.1007/s10462-025-11219-5
Cyber deception: Trends. (2024). arXiv. https://arxiv.org/html/2409.07194v1
Thilakarathne, N. N. (2025). Deception in smart agriculture. Sensors, 25(7), 1861. https://doi.org/10.3390/s25071861
Gizzarelli, E. (2023). SYNAPSE AI honeypot. Master’s Thesis, Politecnico di Torino. https://webthesis.biblio.polito.it/33140/1/tesi.pdf
Kareem, S. A., Sachan, R. C., & Malviya, R. K. (2024). AI-driven adaptive honeypots. SSRN Electronic Journal. https://ssrn.com/abstract=4966935
Reti, D., Elzer, K., Fraunholz, D., Schneider, D., & Schotten, H. (2023). Network simulation deception metrics. arXiv. https://arxiv.org/abs/2301.10629
Sayed, M. A., et al. (2023). Game theory for zero-day deception. arXiv. https://arxiv.org/abs/2307.13107
Pawlick, J., Colbert, E., & Zhu, Q. (2017). Survey on defensive deception via game theory. arXiv. https://arxiv.org/abs/1712.05441
Zhang, L., & Thing, V. L. L. (2021). Historic deception techniques review. arXiv. https://arxiv.org/abs/2104.03594
Wikipedia contributors. (2025). General definitions of honeypot & deception technology. In Wikipedia.
منشور
كيفية الاقتباس
إصدار
القسم
الحقوق الفكرية (c) 2025 bareq maher, Karrar M. Khudhair, Ruaa Riyadh hadi (Author)

هذا العمل مرخص بموجب Creative Commons Attribution 4.0 International License.