Cognitive Honeypots AI-Enhanced Deception for Proactive Threat Hunting

https://doi.org/10.61710/kjcs.v3i3.121

المؤلفون

  • بارق ماهر
  • كرار ماهر خضير 1DepartmentofComputerTechniquesEngineering,ImamAlkadhimUniversityCollege,10001,Baghdad,Iraq
  • رؤى رياض هادي DepartmentofComputerTechniquesEngineering, University of Al-Qadisiyah, Al Diwaniyah, 58001, Iraq

الكلمات المفتاحية:

Cognitive Honeypots، AI-Enhanced Deception، Proactive Threat Hunting، Reinforcement Learning، Cybersecurity

الملخص

The rapidly increasing complexity of cyber threats, including AI-powered attacks, is forcing a shift in defense strategies from reactive to proactive approaches. Traditional honeypots remain largely static and easily identifiable, while newer AI-enhanced models emphasize realism but still lack deep understanding of attacker cognition. To address this gap, this paper introduces CogniTrap, a novel framework that combines a high-interaction honeypot with an AI-driven cognitive deception engine. CogniTrap dynamically creates and adapts “cognitive decoys” designed to exploit attackers’ biases and reasoning flaws. A prototype of CogniTrap was developed and deployed, where decoy placements and adaptations were optimized using reinforcement learning informed by live analysis of attacker tactics, techniques, and procedures (TTPs). Intelligence gathered from triggered decoys was transformed into proactive hypotheses for threat hunting in production environments. Experimental results from comparative 30-day live deployments showed that CogniTrap increased attacker dwell time by 45% compared to a standard high-interaction honeypot and generated higher interaction rates with deceptive assets. Furthermore, it was able to produce high-fidelity threat hunting queries based on attacker cognitive patterns, validating its practical utility. This research marks the first implementation-based framework for adaptive cognitive honeypots, bridging the gap between theoretical cognitive security concepts and operational proactive threat hunting. By providing architecture, algorithms, and empirical validation, CogniTrap establishes a new paradigm for intelligent cyber defense.

التنزيلات

بيانات التنزيل غير متوفرة بعد.

المراجع

Morić, Z., Dakić, V., & Regvart, D. (2025). Advancing cybersecurity with honeypots and deception strategies. Informatics, 12(1), 14. https://doi.org/10.3390/informatics12010014

Bhardwaj, A. (2024). Proactive threat hunting to detect persistent behavior. Alexandria Engineering Journal, 63(1), 73–85. https://doi.org/10.1016/j.aej.2023.11.020

Mahboubi, A. (2024). Evolving techniques in cyber threat hunting: A systematic approach. Journal of Network and Computer Applications, 230, 103632. https://doi.org/10.1016/j.jnca.2024.103632

Iyer, K. I. (2021). Adaptive honeypots: Dynamic deception tactics in modern cyber defense. International Journal of Scientific Research in Archives, 4(1), 45–53. https://doi.org/10.30574/ijsra.2021.4.1.0210

Uddin, M. (2025). Generative AI revolution in cybersecurity: A comprehensive study. Artificial Intelligence Review. https://doi.org/10.1007/s10462-025-11219-5

Cyber deception: State of the art, trends, and open issues. (2024). arXiv. https://arxiv.org/html/2409.07194v1

Noguerol, L. O. (2025). AI-generated honeypots that learn and adapt. Cyber Security Tribe Blog. https://www.cybersecuritytribe.com/articles/ai-generated-honeypots-that-learn-and-adapt

Thilakarathne, N. N. (2025). Cyber threat intelligence platform using deception for smart agriculture. Sensors, 25(7), 1861. https://doi.org/10.3390/s25071861

Gizzarelli, E. (2023). Honeypot and generative AI (SYNAPSE project). Master’s Thesis, Politecnico di Torino. https://webthesis.biblio.polito.it/33140/1/tesi.pdf

Kareem, S. A., Sachan, R. C., & Malviya, R. K. (2024). AI-driven adaptive honeypots for dynamic cyber threats. SSRN Electronic Journal. https://ssrn.com/abstract=4966935

Reti, D., Elzer, K., Fraunholz, D., Schneider, D., & Schotten, H. (2023). Evaluating deception and moving target defense with network attack simulation. arXiv. https://arxiv.org/abs/2301.10629

Sayed, M. A., Anwar, A. H., Kiekintveld, C., Bosansky, B., & Kamhoua, C. (2023). Cyber deception against zero-day attacks: A game theoretic approach. arXiv. https://arxiv.org/abs/2307.13107

Pawlick, J., Colbert, E., & Zhu, Q. (2017). A game-theoretic taxonomy of defensive deception for cybersecurity. arXiv. https://arxiv.org/abs/1712.05441

Zhang, L., & Thing, V. L. L. (2021). Three decades of deception techniques in active cyber defense. arXiv. https://arxiv.org/abs/2104.03594

Wikipedia contributors. (2025). Deception technology. In Wikipedia. https://en.wikipedia.org/wiki/Deception_technology

Wikipedia contributors. (2025). Honeypot (computing). In Wikipedia. https://en.wikipedia.org/wiki/Honeypot_(computing)

EdTech Magazine. (2025, January 30). AI creates realistic honeypots for cybersecurity. EdTech Magazine. https://edtechmagazine.com

SSRN. (2025). Systematic review of honeypot data collection, threat intelligence sharing, and AI/ML applications. SSRN Electronic Journal. https://ssrn.com

JRPS Journal. (2025). Enhancing cybersecurity with AI-driven dynamic honeypots. Journal for Research Publication and Seminar. https://jrpsjournal.com

Prasad, N. (2025). A survey of cyber threat attribution: ML-powered behavioral analytics. Computers & Security, 140, 103688. https://doi.org/10.1016/j.cose.2025.103688

Reti, D., Elzer, K., Fraunholz, D., Schneider, D., & Schotten, H. (2023). Evaluating deception & moving target defense in network simulations. arXiv. https://arxiv.org/abs/2301.10629

Sayed, M. A., et al. (2023). Game theory for cyber deception against zero-day attacks. arXiv. https://arxiv.org/abs/2307.13107

Pawlick, J., Colbert, E., & Zhu, Q. (2017). Game-theoretic defensive deception survey. arXiv. https://arxiv.org/abs/1712.05441

Zhang, L., & Thing, V. L. L. (2021). Retrospect & outlook of deception techniques. arXiv. https://arxiv.org/abs/2104.03594

Wikipedia contributors. (2025). Deception technology. In Wikipedia. https://en.wikipedia.org/wiki/Deception_technology

Wikipedia contributors. (2025). Honeypot computing. In Wikipedia. https://en.wikipedia.org/wiki/Honeypot_(computing)

Cyber Security Tribe. (2025). Adaptive AI honeypots that learn. Cyber Security Tribe Blog. https://www.cybersecuritytribe.com

Morić, Z., Dakić, V., & Regvart, D. (2025). Comparing honeypot solutions for threat detection. Informatics, 12(1), 14. https://doi.org/10.3390/informatics12010014

Bhardwaj, A. (2024). Persistent behavior detection via proactive hunting. Alexandria Engineering Journal, 63(1), 73–85. https://doi.org/10.1016/j.aej.2023.11.020

Mahboubi, A. (2024). Systematic threat hunting techniques. Journal of Network and Computer Applications, 230, 103632. https://doi.org/10.1016/j.jnca.2024.103632

Iyer, K. I. (2021). Adaptive dynamic honeypots. International Journal of Scientific Research in Archives, 4(1), 45–53. https://doi.org/10.30574/ijsra.2021.4.1.0210

Uddin, M. (2025). Generative AI in cybersecurity. Artificial Intelligence Review. https://doi.org/10.1007/s10462-025-11219-5

Cyber deception: Trends. (2024). arXiv. https://arxiv.org/html/2409.07194v1

Thilakarathne, N. N. (2025). Deception in smart agriculture. Sensors, 25(7), 1861. https://doi.org/10.3390/s25071861

Gizzarelli, E. (2023). SYNAPSE AI honeypot. Master’s Thesis, Politecnico di Torino. https://webthesis.biblio.polito.it/33140/1/tesi.pdf

Kareem, S. A., Sachan, R. C., & Malviya, R. K. (2024). AI-driven adaptive honeypots. SSRN Electronic Journal. https://ssrn.com/abstract=4966935

Reti, D., Elzer, K., Fraunholz, D., Schneider, D., & Schotten, H. (2023). Network simulation deception metrics. arXiv. https://arxiv.org/abs/2301.10629

Sayed, M. A., et al. (2023). Game theory for zero-day deception. arXiv. https://arxiv.org/abs/2307.13107

Pawlick, J., Colbert, E., & Zhu, Q. (2017). Survey on defensive deception via game theory. arXiv. https://arxiv.org/abs/1712.05441

Zhang, L., & Thing, V. L. L. (2021). Historic deception techniques review. arXiv. https://arxiv.org/abs/2104.03594

Wikipedia contributors. (2025). General definitions of honeypot & deception technology. In Wikipedia.

منشور

2025-09-25

كيفية الاقتباس

ماهر bareq, ماهر K. ., & رياض R. . (2025). Cognitive Honeypots AI-Enhanced Deception for Proactive Threat Hunting. مجلة الكاظم لعلوم الحاسوب, 3(3), 55–70. https://doi.org/10.61710/kjcs.v3i3.121